Spark计算引擎(框架)关于是否完全基于内存计算的分析:

开始先声明一点:Spark并不是一个完全基于内存计算的引擎

在一般的概念中,都会说Spark是完全基于内存计算的、快速的、通用的、可扩展的大数据计算引擎

---->>>对此我的理解为基于内存的操作:

---------如果计算不涉及当前节点与其他节点进行数据及信息间的交换,那么Spark 可以在内存中一次性完成这些操作,如此一来就不需要中间的Shuffle阶段的落盘操作,进而减少了磁盘 IO 的操作

---->>>但如下这些情况很好的说明了Spark并不是完全基于内存计算的:

1.当Spark存在Shuffle操作时,这就一定要进行落盘操作(注意所有Shuffle都需要落盘,哪怕数据量在少也需要落盘操作)
2.是当内存空间有限,但要处理的数据量太大,导致内存无法存储数据,也就会执行落盘操作
3.如果Spark在运算过程中涉及到数据交换,Spark机制也会把Shuffle操作产生的数据,写入到文件或磁盘中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值