SAP 已删除交货单查询

在SAP系统中,当交货单被删除时,其相关信息会从LIKP表中直接移除。用户可以通过检查CDHDR表的UDATE字段来确定删除日期,同时在CDPOS表中查找TABNAME为LIKP且CHNGIND字段值为D的记录,以定位已被删除的交货单号,即CDHDR表的OBJECTID字段值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在SAP中,交货单删除后,LIKP表数据是直接进行删除的,所以需要到CDHDR表和CDPOS表中去查询。

通过CDHDR表的UDATE字段来确定删除日期,CDPOS表TABNAME字段确定删除表为'LIKP’,删除标记CHNGIND为'D',可以找到已删除的交货单号,即为CDHDR-OBJECTID。

### 树的同构概念及其算法实现 #### 树的同构定义 树的同构是指两棵树具有相同的拓扑结构,即通过交换某些节点的左右子树可以使得这两棵树完全相同。换句话说,如果树 \( T_1 \) 可以通过对部分节点的左右子树进行任意次数的交换变为树 \( T_2 \),则称这两棵树是同构的[^3]。 #### 判断树同构的方法 为了判断两棵树是否同构,通常采用递归的方式比较每一对对应节点的数据以及其子树结构。以下是具体的实现思路: 1. **基础条件** 如果当前两个节点都为空,则认为它们相等;如果其中一个为空另一个不为空,则认为不同。 2. **数据一致性检查** 检查当前两个节点的数据是否相等。如果不相等,则直接返回 false。 3. **子树结构比较** 对于每个节点,分别比较左子树与右子树的关系: - 左子树与另一棵树的左子树同构,且右子树与另一棵树的右子树同构; - 或者左子树与另一棵树的右子树同构,且右子树与另一棵树的左子树同构。 这种逻辑可以通过递归来实现,最终得出结论。 --- #### Java 实现代码 以下是一个完整的 Java 实现来判断两棵未生根树是否同构: ```java // 定义树节点类 class TreeNode { char val; // 节点值 TreeNode left, right; public TreeNode(char item) { this.val = item; this.left = null; this.right = null; } } public class TreeIsomorphism { // 主函数用于判断两棵树是否同构 public static boolean isomorphic(TreeNode root1, TreeNode root2) { if (root1 == null && root2 == null) { // 两者均为空 return true; } if (root1 == null || root2 == null) { // 仅有一个为空 return false; } // 当前节点值必须相等 if (root1.val != root2.val) { return false; } // 子树可能有两种情况:正常顺序或者翻转后的顺序 return (isomorphic(root1.left, root2.left) && isomorphic(root1.right, root2.right)) || (isomorphic(root1.left, root2.right) && isomorphic(root1.right, root2.left)); } public static void main(String[] args) { // 创建第一棵树 TreeNode tree1 = new TreeNode('a'); tree1.left = new TreeNode('b'); tree1.right = new TreeNode('c'); tree1.left.left = new TreeNode('d'); tree1.left.right = new TreeNode('e'); // 创建第二棵树 TreeNode tree2 = new TreeNode('a'); tree2.left = new TreeNode('c'); tree2.right = new TreeNode('b'); tree2.right.left = new TreeNode('e'); tree2.right.right = new TreeNode('d'); // 输出结果 System.out.println(isomorphic(tree1, tree2)); // 应输出 true } } ``` 此代码实现了 `isomorphic` 函数,它能够递归地比较两棵树的每一个节点并判断它们是否满足同构关系[^5]。 --- #### 时间复杂度分析 上述算法的时间复杂度主要取决于树的高度和节点数量。由于每次递归调用都会减少一层深度,并且最多访问每个节点一次,因此总体时间复杂度为 \( O(n) \)[^1],其中 \( n \) 是树中的节点总数。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值