1049. 最后一块石头的重量 II
题目链接:
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
求解思路:
等于把石头尽量分成重量相同的两堆
动规五部曲
- 确定dp数组及其下标含义:容量为j的背包,最多能装下的最大重量为dp[j]
- 确定递推公式:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
- dp数组的初始化:重量不会是负数,全部初始化为0即可
- 确定遍历顺序:先物品,再背包,且遍历背包要倒序
- 举例推导dp数组:以[2,4,1,1]为例,如图。最后相撞后的结果为sum-2*dp[target]
代码:
class Solution {
public:
int lastStoneWeightII(vector<int>& stones) {
int sum = 0;
for (int i : stones) sum += i;
int target = sum / 2;
vector<int> dp(target+1, 0);
for (int i = 0; i < stones.size(); i++){
for (int j = target; j >= stones[i]; j--){
dp[j] = max(dp[j], dp[j-stones[i]] + stones[i]);
}
}
return sum - 2*dp[target];
}
};
494. 目标和
题目链接:
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
求解思路:
等于求有多少种不同的组合方式,能组合成和为left的子集(装满这个背包有几种方法)
动规五部曲
- dp数组及其下标含义:填满j(包括j)这么大容积的包,有dp[j]种方法
- 确定递推公式:dp[j] += dp[j - nums[i]],举例说明如下,凑整dp[5]的方法就是把所有的dp[j - nums[i]]累加
- 已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
- 已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
- 已经有一个3(nums[i]) 的话,有 dp[2]中方法 凑成 容量为5的背包
- 已经有一个4(nums[i]) 的话,有 dp[1]中方法 凑成 容量为5的背包
- 已经有一个5 (nums[i])的话,有 dp[0]中方法 凑成 容量为5的背包
- 初始化:dp[0] = 1,dp[0]是递推结果的起源
- 遍历顺序:先物品,再背包,背包要倒序
- 举例推导dp数组:nums: [1, 1, 1, 1, 1],target = 3,此时bagSize = 4,如图
代码:
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int sum = 0;
for (int i : nums) sum += i;
// 两种特殊情况
if (abs(target) > sum) return 0;
if ((target + sum) % 2 == 1) return 0;
int bagSize = (target + sum) / 2;
// 填满j(包括j)这么大容积的包,有dp[j]种方法
vector<int> dp(bagSize+1, 0);
// 初始化
dp[0] = 1;
for (int i = 0; i < nums.size(); i++){
for (int j = bagSize; j >= nums[i]; j--){
dp[j] += dp[j-nums[i]];
}
}
return dp[bagSize];
}
};
474.一和零
题目链接:
力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台
求解思路:
动规五部曲
- 确定dp数组及其下标含义:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]
- 递推公式:dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1,则 dp[i][j] = dp[i - zeroNum][j - oneNum] + 1,注意和dp[i][j]本身比较,取较大的值;字符串的zeroNum和oneNum相当于物品的重量(weight[i]),字符串本身的个数相当于物品的价值(value[i]),即01背包问题,不过重量有两个维度
- 初始化:物品价值不会为负数,因此全部初始化为0
- 遍历顺序:先物品,后背包,背包倒序;注意物品是strs里的字符串,背包是题目中的m和n
- 举例推导:以 ["10","0001","111001","1","0"],m = 3,n = 3为例,如图
代码:
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
// 初始化
vector<vector<int>> dp(m+1, vector<int> (n+1, 0));
for (string str : strs){ // 遍历物品
int one = 0, zero = 0;
for (char c : str){
if (c == '0') zero ++;
else one++;
}
// 遍历背包(倒序遍历)
for (int i = m; i >= zero; i--){
for (int j = n; j >= one; j--){
dp[i][j] = max(dp[i][j], dp[i-zero][j-one] + 1);
}
}
}
return dp[m][n];
}
};