IBOutlet的初始化过程

       今天写了个两个视图相互传值的程序,发现了一个小问题。解决办法和楼下引用的文献是一样的,我是解决之后去谷歌的,但是发现这个问题别人也遇到过,而且也找到了变通的法子。

The nib file you specify is not loaded right away. It is loaded the first time the view controller’s view is accessed. If you want to perform additional initialization after the nib file is loaded, override the viewDidLoad method and perform your tasks there.

个人观点是把IBOutlet当作subview,采用延迟加载的策略,具体而言就是在显示视图控制器对应的视图时,紧随view加载,可以viewDidLoad里设置或者在视图显示出来的时候,按道理来说在viewDidLoad中比较自然~~~~因为经过我的测试,在iewDidLoad中的行为要先于在presentViewController:后对IBOutlet的设置。


http://blog.csdn.net/zxc110110/article/details/7184528

BOutlet变量的生命周期 IBOutlet怎么会是nil呢(内功篇)


当使用initWithNibName 初始化viewController时,发现IBoutlet修饰的变量为nil。原因是该viewController或view没有加载到当前视图中,不处于活动状态。

类似的一个情况: http://blog.prosight.me/index.php/tag/iboutlet

今天遇到一个问题困扰了很久。 代码如下:
1.
2. FileOverviewViewControll er *fileOverviewViewControll er =[[FileOverviewViewControll er alloc]initWithNibName:@”FileOverviewView” bundle:nil];
3. // AAAAA
4. [self.navigationControllerpushViewController:fileOverviewViewControll er animated:YES];
5. // BBBBBB
6.
如果你有这个Controller中的view里面有IBOutlet的变量,如果你在A的地方进行赋值或者其他操作的话,界面将不会有任何更新,那些IBoutlet变量的值都为NULL,如果在B处设置就可以正常显示了。
结论: 如果你使用navigation Controller的话,一定要在push了这个ViewController之后再操作这个ViewController中的IBOutlet变量,否则这个变量会因为不在作用范围内而无法操作。
扩展开来也就是说只有当一个ViewController被载入处于活动状态的时候,这个ViewController中的IBOutlet变量才能正常使用,否则都会因为不在作用范围内而无法正常使用的

如果不使用navigation Controlle的话,必须在

[XXViewaddSubview:fileOverviewViewController.view]后再使用IBoutlet变量


为了在iOS应用中实现面部识别功能,你需要利用苹果提供的CoreML框架,这是一个专门用于在iOS设备上运行机器学习模型的框架。在你开始之前,建议深入阅读《iOS应用入门:利用CoreML实现机器学习》这本书,它将指导你从机器学习基础到项目实战的全过程。 参考资源链接:[iOS应用入门:利用CoreML实现机器学习](https://wenku.csdn.net/doc/4bjwvyy6uj) 首先,你需要准备一个训练好的面部识别模型。如果你没有现成的模型,可以通过使用如TensorFlow或Keras等机器学习库来训练一个模型,然后再将其转换成CoreML支持的格式。这一步骤可以通过Xcode中的mlmodelc工具完成。 接下来,你可以在Xcode中创建一个新的iOS项目,并开始集成CoreML模型。具体步骤如下: 1. 将训练好的`.mlmodel`文件拖放到Xcode项目中,Xcode会自动生成对应的Swift类文件供你调用。 2. 在项目中导入必要的CoreML框架:`import CoreML`。 3. 使用生成的Swift类来加载模型,这通常通过调用该类的初始化函数完成。 4. 使用摄像头捕获实时图像数据,并将图像数据转换为模型需要的格式。 5. 使用模型进行预测,CoreML会返回预测结果,你可以根据需要对结果进行处理。 6. 根据模型返回的面部位置信息,可以在摄像头预览层面上绘制矩形框来标记识别到的面部。 以下是使用CoreML进行面部识别的一个简单代码示例: ```swift import UIKit import AVFoundation import CoreML class ViewController: UIViewController { @IBOutlet weak var cameraView: UIView! var model: Face Detector! override func viewDidLoad() { super.viewDidLoad() model = Face Detector() captureSession.startRunning() let camera = captureSession.outputs.first! cameraView.layer.addSublayer(camera.connection统领层级) captureSession.addInput(camera) } func processImage(_ imageBuffer: CVPixelBuffer) { guard let pixelBuffer = imageBuffer else { return } let image = CIImage(cvPixelBuffer: pixelBuffer) let faceDetection = model.prediction(image: image) // 处理模型返回的面部检测信息 } private lazy var captureSession: AVCaptureSession = { let session = AVCaptureSession() let backCamera = AVCaptureDevice.default(for: .video) let input = try! AVCaptureDeviceInput(device: backCamera!) session.addInput(input) return session }() } ``` 这个代码示例仅展示了如何在相机数据流中集成模型,实际上你需要根据模型返回的数据来绘制面部识别框,并且处理各种实际应用场景下的细节问题。《iOS应用入门:利用CoreML实现机器学习》将为你提供更多深入的技术细节和实践案例,帮助你更好地理解和应用CoreML框架。 参考资源链接:[iOS应用入门:利用CoreML实现机器学习](https://wenku.csdn.net/doc/4bjwvyy6uj)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值