题目:一个环形路线上有加油站,每个加油站可以加gas[i]的油,走到下一站得消耗cost[i]的油,问能不能找一个点出发,走完全程。若能,输出点的位置,若不能,输出-1。题目确保给定数据有唯一解。
分析:每个加油站的增益为retain[i] = gas[i] - cost[i],那么如果n个油站的retain加起来为负,怎么走都不可能走完。如果为正,就可以。那么我们希望一开始就能得到尽量大的retain和,在后面慢慢消耗减少。
比如retain数组为 a b c d e
如果a<0,那么我们就抛弃a,尝试从b出发
同理,如果a+b <0,那么我们就抛弃a b 尝试从c出发
为什么可以这样呢?因为我们知道a+b+c+d+e > 0,而a+b<0,所以c+d+e>0且大于a+b的损耗,那么c d e中必有一点出发能到达终点。
所以我们就把问题缩小到了从c出发,初始消耗为a+b的问题
答案:
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
vector<int> retain;
int sumRetain = 0;
// caculate retain array
for(int i = 0; i < gas.size(); i++){
retain.push_back(gas[i] - cost[i]);
sumRetain += retain[i];
}
if (sumRetain < 0)// no solution
return -1;
else{
int sum = 0;
int pos = 0;
for(int i = 0; i < gas.size(); i++){
sum += retain[i];
if (sum<0){
pos = i+1; // reset start position
sum = 0;
}
}
return pos;
}
}
};