在日常开发过程中,总会遇到需要加密解密的需求,这里我整理了C#常用的加密解密方法分享给大家。
先看看加密的基本概念:
"加密",是一种限制对网络上传输数据的访问权的技术。原始数据(也称为明文,plaintext)被加密设备(硬件或软件)和密钥加密而产生的经过编码的数据称为密文(ciphertext)。将密文还原为原始明文的过程称为解密,它是加密的反向处理,但解密者必须利用相同类型的加密设备和密钥对密文进行解密。
加密的基本功能包括:
1. 防止不速之客查看机密的数据文件;
2. 防止机密数据被泄露或篡改;
3. 防止特权用户(如系统管理员)查看私人数据文件;
4. 使入侵者不能轻易地查找一个系统的文件。
一、本节摘要
本节主要分享RAS加密解密:
RSA公钥加密算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的。RSA取名来自开发他们三者的名字。RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。RSA算法是第一个能同时用于加密和数字签名的算法,也易于理解和操作。
RSA是被研究得最广泛的公钥算法,从提出到现在已近二十年,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。即RSA的重大缺陷是无法从理论上把握它的保密性能如何,而且密码学界多数人士倾向于因子分解不是NPC问题。
RSA的缺点主要有:
A)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。
B)分组长度太大,为保证安全性,n 至少也要 600bits以上,使运算代价很高,尤其是速度较慢,较对称密码算法慢几个数量级;且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。目前,SET(Secure Electronic Transaction)协议中要求CA采用2048bits长的密钥,其他实体使用1024比特的密钥。
C)RSA密钥长度随着保密级别提高,增加很快。下表列出了对同一安全级别所对应的密钥长度。
二、源码分享
using System;
using System.Text;
using System.Security.Cryptography;
namespace Common
{
/// <summary>
/// RSA加密解密及RSA签名和验证
/// </summary>
public class RSACryption
{
public RSACryption()
{
}
#region RSA 的密钥产生
/// <summary>
/// RSA 的密钥产生 产生私钥 和公钥
/// </summary>
/// <param name="xmlKeys"></param>
/// <param name="xmlPublicKey"></param>
public void RSAKey(out string xmlKeys,out string xmlPublicKey)
{
System.Security.Cryptography.RSACryptoServiceProvider rsa=new RSACryptoServiceProvider();
xmlKeys=rsa.ToXmlString(true);
xmlPublicKey = rsa.ToXmlString(false);
}
#endregion
#region RSA的加密函数
//##############################################################################
//RSA 方式加密
//说明KEY必须是XML的行式,返回的是字符串
//在有一点需要说明!!该加密方式有 长度 限制的!!
//##############################################################################
//RSA的加密函数 string
public string RSAEncrypt(string xmlPublicKey,string m_strEncryptString )
{
byte[] PlainTextBArray;
byte[] CypherTextBArray;
string Result;
RSACryptoServiceProvider rsa=new RSACryptoServiceProvider();
rsa.FromXmlString(xmlPublicKey);
PlainTextBArray = (new UnicodeEncoding()).GetBytes(m_strEncryptString);
CypherTextBArray = rsa.Encrypt(PlainTextBArray, false);
Result=Convert.ToBase64String(CypherTextBArray);
return Result;
}
//RSA的加密函数 byte[]
public string RSAEncrypt(string xmlPublicKey,byte[] EncryptString )
{
byte[] CypherTextBArray;
string Result;
RSACryptoServiceProvider rsa=new RSACryptoServiceProvider();
rsa.FromXmlString(xmlPublicKey);
CypherTextBArray = rsa.Encrypt(EncryptString, false);
Result=Convert.ToBase64String(CypherTextBArray);
return Result;
}
#endregion
#region RSA的解密函数
//RSA的解密函数 string
public string RSADecrypt(string xmlPrivateKey, string m_strDecryptString )
{
byte[] PlainTextBArray;
byte[] DypherTextBArray;
string Result;
System.Security.Cryptography.RSACryptoServiceProvider rsa=new RSACryptoServiceProvider();
rsa.FromXmlString(xmlPrivateKey);
PlainTextBArray =Convert.FromBase64String(m_strDecryptString);
DypherTextBArray=rsa.Decrypt(PlainTextBArray, false);
Result=(new UnicodeEncoding()).GetString(DypherTextBArray);
return Result;
}
//RSA的解密函数 byte
public string RSADecrypt(string xmlPrivateKey, byte[] DecryptString )
{
byte[] DypherTextBArray;
string Result;
System.Security.Cryptography.RSACryptoServiceProvider rsa=new RSACryptoServiceProvider();
rsa.FromXmlString(xmlPrivateKey);
DypherTextBArray=rsa.Decrypt(DecryptString, false);
Result=(new UnicodeEncoding()).GetString(DypherTextBArray);
return Result;
}
#endregion
}
}