音乐生成论文简要概括

MIDI定义

参考雅马哈XG标准的MIDI协议:MIDI程序的设计目标就是要将所要演奏的音乐或音乐曲目,按其进行的节奏、速度、技术措施等要求,转换成MIDI控制语言,以便在这些MIDI指令的控制之下,各种音源在适当的时间点上,以指定的音色、时值、强度等、演奏出需要的音响。

近年音乐生成相关论文的特点及使用的数据集概括


2016年的WaveNet的语音转录
特点:实现文本到语音的转换和语音生成任务,虽然效果好,但生成的语音很短。
数据集:使用文本语音数据集


2017年的MuseGAN
特点:产生多声道(多种乐器)的复调音乐。作者使用Lakh Pianoroll Dataset 来训练模型以生成流行歌曲短语,包括低音,鼓,吉他,钢琴和弦乐曲目。
数据集:Lakh Pianoroll Dataset,不含人声的歌曲,是并不是纯粹的单一乐器的的数据。


2017年的Neural translation of musical style
特点:运用于作曲家风格的转换,但只能学到速度的转换,不能学到不同的音乐和流派的信息。
数据集:Piano datase,包含古典和爵士风格的MIDI的钢琴文件的成对文件。


2018年的MIDI-VAE: Modeling dynamics and instrumentation of music with applications to style transfer
特点:使用多任务变分自动编码器模型,具有共享的潜在空间,能够改变从例如Classic到Jazz的完整组合的风格。除音符音高外,MIDI-VAE还模拟MIDI文件中包含的音乐的大多数其他方面,即速度,音符持续时间和乐器。


2018年的Conditional WaveGAN
特点:主要作用于文本转语音,可以从人类语音的小词汇中产生可理解的单词,以及合成来自其他领域的音频,例如鸟类发声,鼓和钢琴。


2018年的Symbolic Music Genre Transfer with CycleGAN
特点:主要应用于音乐流派的转移,如爵士到古典,古典到爵士,性能优于MIDI-VAE。


2019年的LakhNES: Improving multi-instrumental music generation with cross-domain pre-training
特点: 通过跨域训练提高多乐器的音乐生成效果
数据集:Lakh MIDI dataset,数据集是不含人声的歌曲,是并不是纯粹的单一乐器的的数据


2019年的利用MAESTRO数据集实现钢琴音乐分解建模与生成
特点:提出Wave2Midi2Wave网络。
数据集:使用的是MAESTRO Dataset,内容是钢琴语音和midi文件的成对数据集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还是少年呀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值