(POJ 3494)Largest Submatrix of All 1’s (DP、单调栈)

12 篇文章 0 订阅
5 篇文章 0 订阅
博客介绍了如何利用单调栈解决POJ 3494问题,即找到最大全1子矩阵。思路是针对每一行解决最大矩形问题,通过枚举开始行,并确保到结束行的所有元素为1,从而找到最宽的子矩阵。由于使用结构体和scanf导致自带栈超时,提示可能需要优化代码效率。
摘要由CSDN通过智能技术生成

思路

求最大子矩阵问题相当于对每一行求最大矩形问题问题,可以用单调栈处理。
因为子矩阵必有开始行和结束行,相当于枚举开始行,然后通过histogram的最大矩形问题保证到结束行为止都是1且最宽

代码

用自带的栈会超时(因为我用了结构体和scanf的关系)

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath> 
#include <stack>
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=a;i<b;i++)
#define debug(a) printf("a =: %d\n",a);
const int INF=0x3f3f3f3f;
const int maxn=2e3+50;
const int Mod=1000000007;
typedef long long ll;
using namespace std;


struct Node{
    int h,startPos;
    Node(){}
    Node(int startPos,int h){
        this->h=h;
        this->startPos=startPos;
    }
    bool operator<(const Node &r)const{
        return h<r.h;
    }
};


int m,n;
Node st[maxn*10];
int solve(int h[]){
    int ans=0;
    int sz=0;
    st[sz++]=Node(0,-1);    //压入最低的,防止栈空 (这样就不用判断)

    for(int i=1;i<=n+1;i++){
        int height,curPos;
        if (i>n) height=0;  //全部处理完,将元素出栈(除了第一个) 
        else height=h[i];
        curPos=i;

        //一开始起始位置在当前位置 
        Node tmp=Node(curPos,height);
        while(height<st[sz-1].h){
            tmp=st[--sz];
            int curAns=(curPos-tmp.startPos)*tmp.h;
            ans=max(ans,curAns);
        }
        st[sz++]=Node(tmp.startPos,height);
    }
    return ans;
}

int s[maxn][maxn];
int cc[maxn][maxn];
int main()
{
    #ifndef ONLINE_JUDGE
        freopen("in.txt","r",stdin);
    #endif

    while(~scanf("%d %d",&m,&n)){
        for(int i=1;i<=m;i++){
            for(int j=1;j<=n;j++) {
                scanf("%d",&s[i][j]);
            }
        }

        for(int c=1;c<=n;c++){
            int cnt=0;
            for(int r=1;r<=m;r++){
                if (s[r][c]) cc[r][c]=++cnt;
                else cc[r][c]=cnt=0;
            }
        }
    /*
        for(int i=1;i<=m;i++){  
            for(int j=1;j<=n;j++){
                printf("%d ",cc[i][j]);
            }
            puts("");
        }*/
        int ans=0;
        for(int i=1;i<=m;i++) ans=max(ans,solve(cc[i]));
        printf("%d\n",ans);
    }
    return 0;

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值