HDU2084 DP入门题

数塔

Problem Description

在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的:

有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
这里写图片描述
已经告诉你了,这是个DP的题目,你能AC吗?

Input

输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。

Output

对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。

Sample Input

1
5
7
3 8
8 1 0 
2 7 4 4
4 5 2 6 5

Sample Output

30

这是一道简单的DP入门题。解题的关键在于找到递推关系,可以从起点往终点推,也可以从终点往起点推。当然这里后者要更加简单一些。
dp[ i ][ j ]存的是当走到第 i 行、第 j 列的那个数时,当前获得的最大的数字之和。
(从终点递推到起点)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int a[102][102];
int dp[102][102];
int n;
void solve()
{
    for(int i=0;i<n+1;i++)
            dp[n-1][i]=a[n-1][i];
    for(int i=n-2;i>=0;i--)
        for(int j=0;j<i+1;j++)
            dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+a[i][j];
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(dp,0,sizeof(dp));
        scanf("%d",&n);
        for(int i=0;i<n;i++)
            for(int j=0;j<i+1;j++)
                scanf("%d",&a[i][j]);
        solve();
        cout<<dp[0][0]<<endl;
    }
    return 0;
}

(从起点递推到终点)

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int a[102][102];
int dp[102][102];
int n;
void solve()
{
    dp[0][0]=a[0][0];
        for(int i=1;i<n;i++)
            for(int j=0;j<i+1;j++)
        {
            if(j==0)
                dp[i][j]=dp[i-1][j]+a[i][j];
            else if(j==i)
                dp[i][j]=dp[i-1][j-1]+a[i][j];
            else
                dp[i][j]=max(dp[i-1][j]+a[i][j],dp[i-1][j-1]+a[i][j]);
        }
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        memset(dp,0,sizeof(dp));
        scanf("%d",&n);
        for(int i=0;i<n;i++)
            for(int j=0;j<i+1;j++)
                scanf("%d",&a[i][j]);
        solve();
        int ans=0;
        for(int i=0;i<n+1;i++)
            ans=max(ans,dp[n-1][i]);
        cout<<ans<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值