数塔
Problem Description
在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的:
有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?
已经告诉你了,这是个DP的题目,你能AC吗?
Input
输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。
Output
对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。
Sample Input
1
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
Sample Output
30
这是一道简单的DP入门题。解题的关键在于找到递推关系,可以从起点往终点推,也可以从终点往起点推。当然这里后者要更加简单一些。
dp[ i ][ j ]存的是当走到第 i 行、第 j 列的那个数时,当前获得的最大的数字之和。
(从终点递推到起点)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int a[102][102];
int dp[102][102];
int n;
void solve()
{
for(int i=0;i<n+1;i++)
dp[n-1][i]=a[n-1][i];
for(int i=n-2;i>=0;i--)
for(int j=0;j<i+1;j++)
dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+a[i][j];
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
memset(dp,0,sizeof(dp));
scanf("%d",&n);
for(int i=0;i<n;i++)
for(int j=0;j<i+1;j++)
scanf("%d",&a[i][j]);
solve();
cout<<dp[0][0]<<endl;
}
return 0;
}
(从起点递推到终点)
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int a[102][102];
int dp[102][102];
int n;
void solve()
{
dp[0][0]=a[0][0];
for(int i=1;i<n;i++)
for(int j=0;j<i+1;j++)
{
if(j==0)
dp[i][j]=dp[i-1][j]+a[i][j];
else if(j==i)
dp[i][j]=dp[i-1][j-1]+a[i][j];
else
dp[i][j]=max(dp[i-1][j]+a[i][j],dp[i-1][j-1]+a[i][j]);
}
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
memset(dp,0,sizeof(dp));
scanf("%d",&n);
for(int i=0;i<n;i++)
for(int j=0;j<i+1;j++)
scanf("%d",&a[i][j]);
solve();
int ans=0;
for(int i=0;i<n+1;i++)
ans=max(ans,dp[n-1][i]);
cout<<ans<<endl;
}
return 0;
}