本文是LLM系列文章,针对《Development of an AI Anti-Bullying System Using Large Language Model Key Topic Detection》的翻译。
摘要
本文介绍并评估了人工智能 (AI) 反欺凌系统的开发工作。该系统旨在识别通过社交媒体和其他机制进行的协同霸凌攻击,对其进行表征,并针对它们提出补救和应对活动。特别是,大型语言模型 (LLM) 用于填充增强的基于专家系统的霸凌攻击网络模型。这有助于分析和补救活动(例如向社交媒体公司生成报告消息)确定。本文描述了该系统,并分析了 LLM 填充模型的有效性。
1 引言
2 背景
3 技术
4 实验和结果
5 结论和未来工作
提出的系统并非没有缺陷。目前,关键主题检测在很多方面都被证明是不可靠的。在某些情况下,代词未替换为用户提示中之前引入的专有名词。一些名称被扩展为推断的组成部分(例如,“希腊群岛”被扩展为米科诺斯岛、圣托里尼岛和克里特岛)。行动往往没有意义,例如“Petra rising cliffs”。这些问题可能会导致严重的不可靠性