Development of an AI Anti-Bullying System Using Large Language Model Key Topic Detection

本文是LLM系列文章,针对《Development of an AI Anti-Bullying System Using Large Language Model Key Topic Detection》的翻译。

使用大型语言模型关键主题检测的 AI 反欺凌系统的开发

摘要

本文介绍并评估了人工智能 (AI) 反欺凌系统的开发工作。该系统旨在识别通过社交媒体和其他机制进行的协同霸凌攻击,对其进行表征,并针对它们提出补救和应对活动。特别是,大型语言模型 (LLM) 用于填充增强的基于专家系统的霸凌攻击网络模型。这有助于分析和补救活动(例如向社交媒体公司生成报告消息)确定。本文描述了该系统,并分析了 LLM 填充模型的有效性。

1 引言

2 背景

3 技术

4 实验和结果

5 结论和未来工作

提出的系统并非没有缺陷。目前,关键主题检测在很多方面都被证明是不可靠的。在某些情况下,代词未替换为用户提示中之前引入的专有名词。一些名称被扩展为推断的组成部分(例如,“希腊群岛”被扩展为米科诺斯岛、圣托里尼岛和克里特岛)。行动往往没有意义,例如“Petra rising cliffs”。这些问题可能会导致严重的不可靠性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值