ubuntu 20.04 运行repo init 提示 /usr/bin/env: ‘python’: No such file or directory 解决方案

原因:

运行 repo 需要用到 python ,而ubuntu 20.04 运行python的命令是python3,所以会提示没有

解决方法:

1.下载python2,我使用的会提示需要用python2

sudo apt install python2

2.在/usr/bin/目录下为python2创建软链

sudo ln -s /usr/bin/python2 /usr/bin/python

再运行 repo init即可

### 在 Ubuntu 20.04 上安装和配置 YOLOv8 #### 准备工作 为了成功安装和运行 YOLOv8,在开始前需要完成一些必要的准备工作。这包括安装显卡驱动程序、设置 CUDA 和 cuDNN 环境以及安装 Anaconda 或 Miniconda 来管理 Python 虚拟环境。 1. **安装 NVIDIA 显卡驱动** 如果使用 GPU 加速训练或推理,需先确认已正确安装适合的 NVIDIA 驱动版本。可以通过以下命令查看当前系统中的显卡型号及其支持的驱动版本: ```bash nvidia-smi ``` 2. **安装 CUDA 和 cuDNN** 根据官方文档推荐,YOLOv8 支持多种 CUDA 版本。对于 Ubuntu 20.04,建议安装 CUDA 11.x 及其对应的 cuDNN 库[^2]。具体步骤如下: - 下载并安装 CUDA 工具包:访问 [NVIDIA 官方网站](https://developer.nvidia.com/cuda-downloads),选择适用于 Ubuntu 20.04 的版本。 - 设置环境变量以便于后续调用 CUDA 功能: ```bash echo 'export PATH=/usr/local/cuda-11.6/bin:$PATH' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc source ~/.bashrc ``` - 下载并解压 cuDNN 文件至 `/usr/local/cuda` 目录下。 3. **安装 OpenCV (可选)** 若计划扩展功能或者处理图像数据流,则可以考虑安装 OpenCV。以下是编译安装方法之一[^3]: ```bash sudo apt update && sudo apt install build-essential cmake git pkg-config libgtk-3-dev \ libavcodec-dev libavformat-dev libswscale-dev libjpeg-dev libpng-dev \ libtiff-dev gfortran openexr libatlas-base-dev python3-dev python3-numpy \ libdc1394-22-dev cd ~/ git clone https://github.com/opencv/opencv.git mkdir opencv/build && cd opencv/build cmake .. make -j$(nproc) sudo make install ``` #### 创建虚拟环境 通过 Conda 创建独立的 Python 环境能够有效隔离依赖冲突问题。执行下列指令来初始化一个新的虚拟环境: ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh source ~/miniconda3/etc/profile.d/conda.sh conda create -n yolov8_env python=3.9 conda activate yolov8_env ``` #### 安装 PyTorch PyTorch 是构建 YOLOv8 模型的核心框架。依据硬件条件选取合适的安装方式。例如针对具备 RTX 系列显卡的情况,采用以下命令即可快速集成最新版 PyTorch 到项目当中: ```bash pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu117 ``` #### 获取 Ultralytics/YOLOv8 并测试 最后一步是从 GitHub 克隆仓库到本地机器上,并按照指引验证基本功能是否正常运作: ```bash git clone https://github.com/ultralytics/ultralytics.git cd ultralytics pip install -r requirements.txt python detect.py --weights yolov8s.pt --img 640 --conf 0.25 --source data/images/zidane.jpg ``` 以上流程涵盖了从基础软硬件设施搭建直至实际运用预训练权重文件检测目标物体的整体过程。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值