POJ2480 欧拉函数的应用

POJ 2480 欧拉函数的应用


题目链接

  • 乍一看和欧拉函数没什么关系,但数论就是这样,处处联系。我们可以枚举i(1<= i <=n),如果i|n,即i是n的因子,那么答案加上euler(n/i)*i。其实ans = Σi*euler(n/i)(i<=i<=n && i|n)。为什么是这样?比如,1到n中有m个数字和n拥有最大公因数i,那么就需要把m*i加入答案中。问题是如何计算m的个数。如果gcd(x,n) = i,可以得到gcd(x/i , n/i)=1,也就是说,有多少个小于等于n的x满足gcd(x/i , n/i)=1,就有多少个小于等于n的x满足gcd(x , n)=i。那么有多少个小于等于n的x满足gcd(x/i , n/i)=1呢?根据欧拉函数定义,有euler(n/i)个,即m=euler(n/i),所以ans = Σi*euler(n/i)。
    然后还可以优化。小于n且与n互素的数i满足gcd(i,n)=1,所有这样的i的个数就是euler(n),这些数和n的最大公约数的和也就是euler(n),另外因为gcd(n,n)=n,所以答案再加上n。这些都是枚举之前的处理,写成代码就是ans=euler(n)+n。枚举的时候,要注意只枚举到sqrt(n),多了就会超时,大于sqrt(n)而小于n的数p在枚举到i=n/p(当然此时n/p<=sqrt(n)<=p)就应一起被计算进答案中
#include <iostream>

using namespace std;
typedef long long ll;

ll euler(ll n)
{
    ll rea=n;
    for(ll i=2; i*i<=n; i++)
        if(n%i==0)//第一次找到的必为素因子
        {
            rea=rea-rea/i;
            do
                n/=i;//把该素因子全部约掉
            while(n%i==0);
        }
    if(n>1)
        rea=rea-rea/n;
    return rea;
}
int main()
{
    ll n;
    while(cin>>n){
        ll s=n+ll(euler(n));
        for(ll i=2;i*i<=n;++i){
            if(n%i==0){
                if(i*i==n) s+=i*euler(i);
                else s+=(i*euler(n/i)+n/i*euler(i));
            }
        }
        cout<<s<<endl;
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值