POJ 2480 Longge's problem [ 求 Σgcd(i,n)(1<=i<=n) ] [欧拉函数]

题意:给定n(1 < n < 2^31),求 Σgcd(i,n) (1<=i<=n)。

分析

乍一看和欧拉函数没什么关系,但数论就是这样,处处联系。我们可以枚举i(1<= i <=n),如果i|n,即i是n的因子,那么答案加上euler(n/i)*i。其实ans = Σi*euler(n/i)(i<=i<=n && i|n)。为什么是这样?比如,1到n中有m个数字和n拥有最大公因数i,那么就需要把m*i加入答案中。问题是如何计算m的个数。如果gcd(x,n) = i,可以得到gcd(x/i , n/i)=1,也就是说,有多少个小于等于n的x满足gcd(x/i , n/i)=1,就有多少个小于等于n的x满足gcd(x , n)=i。那么有多少个小于等于n的x满足gcd(x/i , n/i)=1呢?根据欧拉函数定义,有euler(n/i)个,即m=euler(n/i),所以ans = Σi*euler(n/i)。

然后还可以优化。小于n且与n互素的数i满足gcd(i,n)=1,所有这样的i的个数就是euler(n),这些数和n的最大公约数的和也就是euler(n),另外因为gcd(n,n)=n,所以答案再加上n。这些都是枚举之前的处理,写成代码就是ans=euler(n)+n。枚举的时候,要注意只枚举到sqrt(n),多了就会超时,大于sqrt(n)而小于n的数p在枚举到i=n/p(当然此时n/p<=sqrt(n)<=p)就应一起被计算进答案中。

#include<iostream>
#include<cstdio>
#include<cmath>
#define mst(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long LL;

int euler(int x){
    int res = 1;
    for (int i = 2; i <= (int)sqrt(double(x)); ++i)
    {
        if (x % i == 0)
        {
            res *= i-1;
            x /= i;
            while (x % i == 0)
            {
                res *= i;
                x /= i;
            }
        }
    }
    if (x != 1)
    {
        res *= x-1;
    }
    return res;
}

int main(){
    int n;
    while(~scanf("%d",&n)){
        LL ans=(LL)euler(n)+n;//如果不强制转换成LL会WA
        int x=(int)sqrt(n);
        for(int i=2;i<=x;i++){
            if(n%i==0){
                if(i*i==n) ans+=(LL)i*euler(i);
                else{
                    ans+=((LL)i*euler(n/i)+(LL)(n/i)*euler(i));
                }
            }
        }
        printf("%lld\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值