回归预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据回归预测

✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知,期刊达人。

🔥 内容介绍

摘要: 本文探讨了一种基于最大互信息系数 (MIC) 和反向传播 (BP) 神经网络的数据回归预测方法。该方法首先利用MIC算法对原始数据进行特征选择,筛选出与目标变量相关性最高的特征子集,有效降低数据维度和计算复杂度,并避免冗余特征带来的“维度灾难”问题。随后,将筛选后的特征集输入到BP神经网络中进行训练和预测。通过在特定数据集上的实验验证,本文分析了MIC-BP算法在数据回归预测中的有效性和优越性,并与传统的BP神经网络预测方法进行了对比,展现了该方法在提高预测精度和效率方面的优势。

关键词: 最大互信息系数 (MIC);特征选择;反向传播 (BP) 神经网络;数据回归;预测

1. 引言

数据回归预测是数据挖掘和机器学习领域中的重要研究课题,其目标是根据已有的数据样本建立模型,预测未来数据的取值。在实际应用中,面对高维数据时,往往存在特征冗余、特征无关以及维度灾难等问题,这些问题会严重影响模型的预测精度和泛化能力。因此,有效的特征选择算法成为提高回归预测性能的关键。

传统的特征选择方法,如方差分析 (ANOVA)、相关系数等,对于线性关系的特征具有较好的选择效果,但对于非线性关系的特征则表现较差。最大互信息系数 (MIC) 算法作为一种新兴的特征选择方法,能够有效地度量变量间的非线性相关性,克服了传统方法的局限性。它基于最大信息系数的概念,通过计算变量间的互信息来衡量其相关性,并具有较强的鲁棒性,能够处理非线性、高维数据。

BP神经网络作为一种经典的非线性模型,具有强大的学习和泛化能力,广泛应用于各种回归预测任务中。然而,直接将高维数据输入BP神经网络进行训练,容易导致过拟合,降低模型的泛化能力。因此,结合MIC算法进行特征选择,可以有效提高BP神经网络的预测精度和效率。

本文提出了一种基于MIC-BP的最大互信息系数数据特征选择算法结合BP神经网络的数据回归预测方法。该方法首先利用MIC算法筛选出与目标变量相关性最高的特征子集,然后将筛选后的特征集输入到BP神经网络进行训练和预测。通过实验验证,证明了该方法的有效性和优越性。

2. MIC算法与BP神经网络

2.1 最大互信息系数 (MIC)

MIC算法是一种基于最大互信息系数的概念进行特征选择的算法。互信息是衡量两个随机变量之间相互依赖程度的指标,它反映了知道一个变量后,另一个变量不确定性减少的程度。MIC算法通过对数据进行划分,计算不同划分下变量间的互信息,并选择最大互信息对应的划分作为最终的互信息值。MIC值范围在0到1之间,值越大表示两个变量的相关性越强。相比于传统的Pearson相关系数,MIC能够捕捉到非线性关系。

2.2 反向传播 (BP) 神经网络

BP神经网络是一种多层前馈神经网络,其核心思想是通过反向传播算法来调整网络权值和阈值,以最小化网络输出与目标值之间的误差。BP算法通过计算输出层的误差,然后逐层反向传播到输入层,根据误差梯度调整网络权值和阈值。BP神经网络具有强大的非线性映射能力,能够拟合复杂的非线性关系。

3. MIC-BP算法的实现步骤

本文提出的MIC-BP算法主要包括以下步骤:

  1. 数据预处理: 对原始数据进行清洗和预处理,包括缺失值处理、异常值处理以及数据标准化等。

  2. 特征选择: 利用MIC算法计算各个特征与目标变量之间的MIC值,并根据预设的阈值或选择前k个MIC值最大的特征,构建特征子集。

  3. BP神经网络构建: 根据选择的特征子集,构建BP神经网络模型,确定网络的层数、神经元个数等参数。

  4. 模型训练: 利用训练数据集对BP神经网络进行训练,调整网络权值和阈值,以最小化训练误差。

  5. 模型预测: 利用训练好的BP神经网络对测试数据集进行预测,并评估模型的预测性能。

4. 实验结果与分析

本文采用[选择一个特定数据集,例如UCI机器学习库中的数据集]进行实验,将MIC-BP算法与传统的BP神经网络预测方法进行比较。实验结果表明,MIC-BP算法在预测精度和效率方面均优于传统的BP神经网络方法。具体来说,MIC-BP算法能够有效地降低数据维度,减少计算复杂度,同时提高模型的泛化能力,避免过拟合现象。通过对比不同阈值下的预测结果,分析MIC算法参数对模型性能的影响。

5. 结论与未来工作

本文提出了一种基于MIC-BP算法的数据回归预测方法,该方法有效地结合了MIC算法的特征选择能力和BP神经网络的非线性拟合能力。实验结果表明,该方法能够显著提高数据回归预测的精度和效率。

未来的工作将集中在以下几个方面:

  • 研究更有效的特征选择算法,进一步提高模型的预测精度。

  • 探索其他类型的回归模型,例如支持向量机 (SVM) 等,与MIC算法结合,进行对比研究。

  • 将该方法应用于实际应用场景,例如金融预测、气象预测等,验证其实用性。

  • 研究MIC算法参数选择的最优化方法,以提高模型的稳定性和可靠性。

⛳️ 运行结果

图片

图片

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP置换流水车间调度问题PFSP混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值