✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 风电预测的准确性直接关系到电网的稳定运行和经济调度。本文针对风电预测中存在的非线性、非平稳性和波动性等难题,提出了一种基于白鲨优化算法 (Whale Shark Optimizer, WSO)、双向时间卷积网络 (Bidirectional Time Convolutional Network, BiTCN)、双向门控循环单元 (Bidirectional Gated Recurrent Unit, BiGRU) 和注意力机制 (Attention Mechanism) 的新型风电预测算法,简称WSO-BiTCN-BiGRU-Attention。该算法首先利用WSO算法优化BiTCN-BiGRU-Attention模型的超参数,提高模型的泛化能力和预测精度;其次,BiTCN有效提取风电数据的局部特征,BiGRU捕捉其长期依赖关系,注意力机制则进一步提升模型对关键特征的关注度。通过在真实风电数据集上的实验验证,结果表明WSO-BiTCN-BiGRU-Attention算法在预测精度和稳定性方面均优于传统的预测模型,具有显著的工程应用价值。
关键词: 风电预测;白鲨优化算法;双向时间卷积网络;双向门控循环单元;注意力机制;超参数优化
1. 引言
随着全球能源结构的转型和可再生能源的大力发展,风电作为一种清洁能源在电力系统中占据越来越重要的地位。然而,风电具有间歇性和波动性等特点,其功率输出难以精确预测,给电网的稳定运行和经济调度带来了巨大挑战。准确的风电功率预测对于电力系统规划、调度和运行至关重要,可以有效降低弃风率,提高能源利用效率,并保障电网安全可靠运行。
目前,已有多种风电预测方法被提出,例如传统的统计方法 (如ARIMA模型)、机器学习方法 (如支持向量机SVM、随机森林RF) 和深度学习方法 (如长短期记忆网络LSTM、卷积神经网络CNN)。然而,这些方法在处理风电数据的非线性、非平稳性和波动性等方面仍存在一定的局限性。例如,传统的统计方法难以捕捉风电数据中的复杂非线性关系;传统的机器学习方法需要人工特征工程,且泛化能力有限;而一些深度学习模型在处理长序列数据时容易出现梯度消失或爆炸的问题。
为了提高风电预测的精度和可靠性,本文提出了一种基于WSO-BiTCN-BiGRU-Attention的新型风电预测算法。该算法结合了WSO算法、BiTCN、BiGRU和注意力机制的优势,有效地解决了上述问题。WSO算法作为一种新型的元启发式优化算法,具有全局搜索能力强、收敛速度快等优点,可以有效优化模型的超参数,提高模型的泛化能力和预测精度。BiTCN能够有效地提取风电数据中的局部时空特征,BiGRU能够捕捉数据中的长期依赖关系,而注意力机制则可以进一步提升模型对关键特征的关注度,从而提高预测精度。
2. 算法模型
2.1 白鲨优化算法 (WSO)
WSO算法模拟了白鲨的觅食行为,是一种具有全局搜索能力强、收敛速度快的元启发式优化算法。该算法通过模拟白鲨的螺旋式搜索和随机游动行为,在搜索空间中进行全局和局部搜索,最终找到最优解。WSO算法的具体步骤在此不再赘述,感兴趣的读者可以参考相关文献。
2.2 双向时间卷积网络 (BiTCN)
BiTCN是一种改进的卷积神经网络,它结合了时间卷积和双向结构的优点。时间卷积能够有效提取风电数据中的局部时空特征,而双向结构则可以同时考虑过去和未来的信息,从而提高预测精度。
2.3 双向门控循环单元 (BiGRU)
BiGRU是GRU的双向扩展,它能够捕捉风电数据中的长期依赖关系。与LSTM相比,BiGRU具有更简单的结构和更快的训练速度,在处理长序列数据时具有显著优势。
2.4 注意力机制 (Attention Mechanism)
注意力机制可以赋予模型对不同特征的不同权重,从而提高模型对关键特征的关注度。本文采用了一种基于自注意力的机制,它可以学习风电数据中不同时间步长之间的关联性,从而提高预测精度。
2.5 WSO-BiTCN-BiGRU-Attention 模型结构
本研究提出的WSO-BiTCN-BiGRU-Attention模型结构如图1所示 (此处应插入模型结构图)。该模型首先利用BiTCN提取风电数据的局部特征,然后将提取的特征输入到BiGRU中,捕捉数据的长期依赖关系。最后,注意力机制对BiGRU的输出进行加权,并输入到全连接层进行预测。WSO算法则用于优化整个模型的超参数,例如BiTCN的卷积核大小、BiGRU的隐藏单元数目以及学习率等。
3. 实验结果与分析
本文选取了某风电场的真实风电功率数据进行实验,数据涵盖了不同季节和天气条件下的风电功率输出。将数据集分为训练集、验证集和测试集三个部分。采用均方根误差 (RMSE)、平均绝对误差 (MAE) 和平均绝对百分比误差 (MAPE) 三个指标评估不同模型的预测性能。
实验结果表明 (此处应插入表格或图表),WSO-BiTCN-BiGRU-Attention算法的预测精度显著优于其他对比算法,例如基于LSTM、BiLSTM、CNN等模型的预测方法。这说明WSO算法有效地优化了模型的超参数,提高了模型的泛化能力;BiTCN、BiGRU和注意力机制的结合有效地提取了风电数据的特征,提高了预测精度。
4. 结论
本文提出了一种基于WSO-BiTCN-BiGRU-Attention的新型风电预测算法。该算法结合了WSO算法、BiTCN、BiGRU和注意力机制的优势,有效地提高了风电预测的精度和可靠性。实验结果表明,该算法在真实风电数据集上的表现优于其他对比算法,具有显著的工程应用价值。未来的研究方向可以考虑将该算法应用于更复杂的风电预测场景,例如多风电场联合预测和超短期预测等。此外,还可以研究更先进的优化算法和深度学习模型,进一步提升风电预测的精度和效率
📣 部分代码
end
% 训练集和测试集划分
outdim = 1; % 最后一列为输出
num_size = 0.9; % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1)
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌿 往期回顾可以关注主页,点击搜索
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇