✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
摘要: 本文研究了基于卡尔曼滤波 (Kalman Filter, KF) 和泰勒展开 (Taylor Expansion) 的参数估计方法 (KTF) 用于非线性系统线性二次型调节器 (Linear Quadratic Regulator, LQR) 控制器设计的方案。针对非线性系统模型参数未知或难以精确获取的情况,本文提出了一种结合KTF参数估计和LQR控制策略的有效方法。首先,利用泰勒展开将非线性系统线性化,并基于卡尔曼滤波对线性化模型的参数进行在线估计。然后,利用估计的参数实时更新LQR控制器的增益矩阵,从而实现对非线性系统的有效控制。本文详细阐述了该方法的理论基础、设计步骤以及稳定性分析,并通过仿真实验验证了该方法的有效性和优越性,展现了其在处理非线性系统控制问题上的潜力。
关键词: 非线性系统;LQR控制器;卡尔曼滤波;泰勒展开;参数估计;在线控制
1. 引言
线性二次型调节器 (LQR) 是一种经典的现代控制理论方法,其设计简单、性能优越,被广泛应用于线性系统的控制。然而,许多实际系统具有非线性特性,直接应用LQR控制器往往难以达到理想的控制效果。针对非线性系统,常用的控制方法包括反馈线性化、滑模控制、神经网络控制等。其中,反馈线性化方法需要对系统进行精确的建模,这在实际应用中往往存在困难;滑模控制和神经网络控制虽然能够处理非线性系统,但其设计复杂度较高,且存在颤振等问题。
本文提出了一种基于KTF参数估计的非线性系统LQR控制器设计方法。该方法利用泰勒展开将非线性系统线性化,并基于卡尔曼滤波对线性化模型的参数进行在线估计。通过实时更新LQR控制器的增益矩阵,可以有效地跟踪非线性系统的变化,从而实现对非线性系统的精确控制。相比于其他非线性控制方法,该方法具有建模精度要求较低、设计相对简单、计算效率高等优点。
2. 系统模型与问题描述
考虑一个连续时间非线性系统,其状态空间模型可以表示为:
ẋ = f(x, u) (1)
y = g(x) (2)
其中,x ∈ R<sup>n</sup> 为状态向量,u ∈ R<sup>m</sup> 为控制输入向量,y ∈ R<sup>p</sup> 为输出向量,f(x, u) 和 g(x) 为非线性函数。假设系统的真实参数未知或难以精确获取。我们的目标是设计一个控制器,使得系统输出能够跟踪期望轨迹,并保证系统的稳定性。
3. 基于KTF的参数估计
为了应用LQR控制器,需要对非线性系统进行线性化。本文采用泰勒展开将非线性系统在工作点附近线性化:
ẋ ≈ A(x<sub>0</sub>)x + B(x<sub>0</sub>)u (3)
y ≈ C(x<sub>0</sub>)x (4)
其中,x<sub>0</sub> 为工作点,A(x<sub>0</sub>)、B(x<sub>0</sub>) 和 C(x<sub>0</sub>) 分别为系统矩阵在工作点处的雅可比矩阵。由于系统参数未知,需要利用卡尔曼滤波对A(x<sub>0</sub>)、B(x<sub>0</sub>) 和 C(x<sub>0</sub>) 进行在线估计。
卡尔曼滤波的具体步骤如下:
-
预测步骤: 根据系统模型预测状态和协方差矩阵。
-
更新步骤: 利用测量值更新状态和协方差矩阵。
通过迭代地进行预测和更新步骤,卡尔曼滤波可以实时估计系统的状态和参数。本文将卡尔曼滤波应用于线性化模型的参数估计,并将估计的参数实时反馈到LQR控制器中。
4. LQR控制器设计
基于估计的参数,我们可以设计一个LQR控制器。LQR控制器的目标函数为:
J = ∫<sub>0</sub><sup>∞</sup> (x<sup>T</sup>Qx + u<sup>T</sup>Ru)dt (5)
其中,Q 为半正定权重矩阵,R 为正定权重矩阵。通过求解Riccati方程,可以得到LQR控制器的增益矩阵K:
u = -Kx (6)
将估计的参数代入Riccati方程,可以得到基于参数估计的LQR控制器增益矩阵K。
5. 稳定性分析
由于系统参数是实时估计的,系统的稳定性分析较为复杂。本文采用Lyapunov稳定性理论来分析系统的稳定性。通过构造合适的Lyapunov函数,可以证明在一定的条件下,系统是稳定的。
6. 仿真实验与结果分析
为了验证该方法的有效性,本文进行了仿真实验。仿真结果表明,基于KTF参数估计的LQR控制器能够有效地跟踪期望轨迹,并具有良好的鲁棒性。与传统的LQR控制器相比,该方法在处理非线性系统时具有明显的优势。
7. 结论
本文提出了一种基于KTF参数估计的非线性系统LQR控制器设计方法。该方法利用泰勒展开和卡尔曼滤波对非线性系统进行线性化和参数估计,并结合LQR控制器实现对非线性系统的有效控制。仿真实验结果验证了该方法的有效性和优越性。未来研究可以进一步考虑噪声的影响,以及改进参数估计的精度和效率。 该方法为非线性系统的控制提供了一种新的思路,具有较高的应用价值。
📣 部分代码
function y = sat(x, max, min)
y = x;
y(y > max) = max;
y(y < min) = min;
end
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇