✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要: 轴承作为旋转机械的核心部件,其可靠性直接影响着整个系统的运行状态。准确、高效的轴承故障诊断对于保障设备安全和避免重大经济损失至关重要。本文提出一种基于能量谷优化算法(Energy Valley Optimization, EVO) 优化双向时间卷积神经网络(Bidirectional Time Convolutional Network, BiTCN) 的轴承故障诊断方法。该方法利用BiTCN强大的时间序列特征提取能力,并结合EVO算法对BiTCN模型参数进行优化,以提高诊断精度和效率。实验结果表明,该方法在轴承故障诊断任务中取得了优异的性能,显著优于传统的故障诊断方法。
关键词: 轴承故障诊断;双向时间卷积神经网络;能量谷优化算法;特征提取;深度学习
1. 引言
旋转机械广泛应用于工业生产的各个领域,其可靠性直接关系到生产效率和安全稳定运行。轴承作为旋转机械的关键部件,其状态直接影响着设备的整体性能。因此,及时准确地诊断轴承故障对于预防设备故障、减少经济损失具有重要意义。传统的轴承故障诊断方法主要依赖于人工经验和简单的信号处理技术,例如频谱分析、小波分析等。然而,这些方法受限于人工特征提取的局限性,难以处理复杂的非线性信号,诊断精度和效率有待提高。
近年来,随着深度学习技术的快速发展,基于深度学习的轴承故障诊断方法逐渐成为研究热点。深度学习模型具有强大的特征学习能力,能够自动学习数据中的复杂特征,从而提高诊断精度。卷积神经网络(Convolutional Neural Network, CNN) 因其在图像处理领域的出色表现而被广泛应用于信号处理和故障诊断领域。时间卷积神经网络(Temporal Convolutional Network, TCN) 则专门针对时间序列数据设计,能够有效地捕捉时间序列数据中的长期依赖关系。双向时间卷积神经网络(BiTCN) 在TCN的基础上,结合了双向处理机制,能够同时捕捉过去和未来的信息,进一步提高了对时间序列数据的建模能力。
然而,深度学习模型的性能很大程度上依赖于模型参数的优化。传统的优化算法,如梯度下降法及其变种,容易陷入局部最优解,影响模型的泛化能力。因此,寻找高效的优化算法对提高深度学习模型的性能至关重要。能量谷优化算法(EVO) 是一种新兴的元启发式优化算法,它模拟了自然界中能量谷的形成和演化过程,具有全局搜索能力强、收敛速度快的特点。
本文提出一种基于EVO优化BiTCN的轴承故障诊断方法。该方法首先利用BiTCN提取轴承振动信号中的特征,然后利用EVO算法对BiTCN模型参数进行优化,以提高模型的诊断精度和泛化能力。通过与其他方法进行对比实验,验证了该方法的有效性。
2. 双向时间卷积神经网络(BiTCN)
BiTCN是一种基于TCN的改进型网络结构,它通过结合双向处理机制,能够同时捕捉时间序列数据中的过去和未来信息。与单向TCN相比,BiTCN能够更好地捕捉时间序列数据中的上下文信息,从而提高模型的表达能力。BiTCN的网络结构通常包括多个卷积层、池化层和全连接层。卷积层用于提取时间序列数据中的特征,池化层用于降低特征维度,全连接层用于进行分类。BiTCN的具体结构可以根据实际应用场景进行调整。
3. 能量谷优化算法(EVO)
EVO算法是一种基于能量谷概念的元启发式优化算法。它模拟了自然界中能量谷的形成和演化过程,通过不断寻找能量谷来寻找全局最优解。EVO算法具有以下特点:全局搜索能力强,收敛速度快,参数少,易于实现。在本文中,我们利用EVO算法对BiTCN模型参数进行优化,以提高模型的诊断精度和泛化能力。
4. 基于EVO优化BiTCN的轴承故障诊断方法
本文提出的轴承故障诊断方法主要包括以下步骤:
-
数据预处理: 对采集到的轴承振动信号进行预处理,包括去噪、归一化等操作,以提高数据质量。
-
特征提取: 利用BiTCN提取轴承振动信号中的特征。BiTCN的结构参数需要根据实际情况进行调整,以达到最佳的特征提取效果。
-
模型优化: 利用EVO算法对BiTCN模型参数进行优化,寻找模型的最优参数组合,以提高模型的诊断精度和泛化能力。EVO算法的参数设置也需要根据实际情况进行调整。
-
故障诊断: 利用训练好的BiTCN模型对测试数据进行故障诊断,输出轴承的故障类型及置信度。
5. 实验结果与分析
本文使用公开的轴承数据集进行实验,并将提出的方法与其他方法进行比较,包括传统的故障诊断方法和基于其他深度学习模型的故障诊断方法。实验结果表明,本文提出的基于EVO优化BiTCN的轴承故障诊断方法在诊断精度和效率方面均取得了显著的提升。
6. 结论
本文提出了一种基于EVO优化BiTCN的轴承故障诊断方法,该方法利用BiTCN强大的时间序列特征提取能力,并结合EVO算法对模型参数进行优化,有效提高了轴承故障诊断的精度和效率。实验结果验证了该方法的有效性和优越性。未来研究将进一步探索更有效的深度学习模型和优化算法,以进一步提高轴承故障诊断的准确性和鲁棒性,并研究该方法在不同类型轴承和复杂工况下的适用性。
⛳️ 运行结果
🔗 参考文献
[1] 孙艳玲,张家瑞,鲁振中.拉盖尔-高斯涡旋光束在水下湍流中的传输特性[J].光学学报, 2019, 39(10):6.DOI:10.3788/AOS201939.1001005.
[2] Liao Z , Min W , Li C ,et al.Photovoltaic Power Prediction Based on Irradiation Interval Distribution and Transformer-LSTM[J]. 2024.
[3] 赵斯祺,代红,王伟.基于Transformer-LSTM模型的跨站脚本检测方法[J].计算机应用与软件, 2023, 40(9):327-333.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类