✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要: 多无人机协同路径规划是无人机应用领域中的一个关键问题,尤其在复杂环境中需要高效、安全的路径规划方法。本文深入探讨了利用改进的麋鹿群优化算法(EHO),结合分段线性混沌映射(PWLCM),来解决多无人机协同路径规划问题。通过引入PWLCM混沌映射,增强了EHO算法的全局搜索能力,从而避免陷入局部最优,有效提高了路径规划的效率和质量。本文详细阐述了改进算法的原理、实现步骤,并进行了仿真实验验证,结果表明该算法在多无人机协同路径规划中具有良好的性能,能够在复杂的环境中生成安全、有效的飞行路径。
关键词: 多无人机协同;路径规划;麋鹿群优化算法;混沌映射;分段线性混沌映射;全局优化
1. 引言
近年来,无人机技术得到了飞速发展,并在各个领域得到了广泛应用,如环境监测、农业植保、物流配送、搜救行动等。随着应用场景的日益复杂,单个无人机往往难以完成任务,多无人机协同执行任务的需求日益增加。多无人机协同路径规划是多无人机协同任务执行的关键环节,旨在为多架无人机规划出安全、高效的飞行路径,使其能够在满足各种约束条件(如避障、通信范围、能量限制等)的前提下,协同完成既定任务。
然而,多无人机协同路径规划是一个复杂的优化问题,涉及到多个无人机的路径设计,需要同时考虑路径长度、安全性、冲突避免等多个目标。传统的路径规划算法,如A*算法、Dijkstra算法等,在处理复杂环境下的多无人机协同路径规划问题时,往往面临计算复杂度高、效率低、易陷入局部最优等问题。因此,研究高效、鲁棒的多无人机协同路径规划算法具有重要的理论价值和实际意义。
元启发式算法因其具有全局搜索能力强、无需梯度信息等优点,被广泛应用于路径规划领域。常见的元启发式算法包括遗传算法(GA)、粒子群优化算法(PSO)、蚁群算法(ACO)等。然而,这些算法在处理复杂环境下的多无人机协同路径规划问题时,仍然存在一些不足,如收敛速度慢、易早熟等。
麋鹿群优化算法(Elk Herding Optimization, EHO)是一种新兴的元启发式算法,灵感来源于麋鹿群的社会行为,具有结构简单、参数少、全局搜索能力强等优点。然而,标准的EHO算法在迭代过程中容易陷入局部最优,导致搜索效率降低。为了克服这一缺点,本文提出了一种基于PWLCM混沌映射的改进EHO算法,并将其应用于多无人机协同路径规划问题。
2. 相关工作
多无人机协同路径规划问题是当前研究的热点,国内外学者已经提出了许多解决方案。文献[1]提出了一种基于改进粒子群优化算法的多无人机协同路径规划方法,通过引入动态惯性权重和自适应学习因子,提高了算法的全局搜索能力和收敛速度。文献[2]采用蚁群算法进行路径规划,并引入了信息素挥发因子和启发式因子,提高了算法的鲁棒性和效率。文献[3]结合了A算法和遗传算法,利用A算法生成初始路径,然后利用遗传算法进行优化,从而提高了路径规划的效率。
尽管上述算法在一定程度上解决了多无人机协同路径规划问题,但仍然存在一些不足。例如,粒子群优化算法容易陷入局部最优,蚁群算法计算复杂度高,遗传算法参数设置复杂。近年来,一些新兴的元启发式算法,如灰狼优化算法(GWO)、鲸鱼优化算法(WOA)等,也被应用于路径规划领域,并取得了一定的成果。
麋鹿群优化算法(EHO)作为一种新兴的元启发式算法,具有结构简单、参数少、全局搜索能力强等优点,受到了研究者的关注。文献[4]将EHO算法应用于单无人机路径规划问题,取得了良好的效果。然而,标准的EHO算法在迭代过程中容易陷入局部最优,导致搜索效率降低。
混沌映射是一种确定性的伪随机序列生成方法,具有遍历性、随机性和初值敏感性等特点,可以有效地增强算法的全局搜索能力。分段线性混沌映射(PWLCM)是一种常用的混沌映射方法,具有良好的统计特性和易于实现的优点。
3. 基于PWLCM混沌映射的麋鹿群优化算法(PWLCM-EHO)
为了提高EHO算法的全局搜索能力,避免陷入局部最优,本文提出了一种基于PWLCM混沌映射的改进EHO算法(PWLCM-EHO)。该算法的主要思想是利用PWLCM混沌映射初始化麋鹿种群,并利用混沌扰动策略增强算法的全局搜索能力。
3.1 PWLCM混沌映射
分段线性混沌映射(PWLCM)的表达式如下:
css
x_{i+1} =
\begin{cases}
x_i / p, & 0 \le x_i < p \\
(1 - x_i) / (1 - p), & p \le x_i \le 1
\end{cases}
其中,𝑥𝑖∈[0,1]xi∈[0,1] 是混沌变量, 𝑝∈(0,1)p∈(0,1) 是控制参数。PWLCM混沌映射具有良好的统计特性和易于实现的优点,可以有效地生成随机序列。
3.2 PWLCM-EHO算法步骤
PWLCM-EHO算法的步骤如下:
-
初始化种群: 使用PWLCM混沌映射生成初始麋鹿种群。具体步骤如下:
-
设定种群规模 𝑁N 和控制参数 𝑝p。
-
随机生成 𝑁N 个初始值 𝑥𝑖∈[0,1]xi∈[0,1],作为PWLCM混沌映射的初始状态。
-
迭代PWLCM混沌映射,生成 𝑁N 个混沌序列 𝑥1,𝑥2,...,𝑥𝑁x1,x2,...,xN。
-
将混沌序列映射到解空间,生成初始麋鹿种群。
-
-
计算适应度值: 计算每个麋鹿的适应度值,适应度值代表了该麋鹿位置对应的路径的优劣程度。
-
选择领导者: 根据适应度值选择最优麋鹿作为领导者。
-
更新麋鹿位置: 根据EHO算法的更新公式更新麋鹿的位置。EHO算法的更新公式如下:
css
X_{i+1} = X_i + rand * (X_{leader} - X_i)
其中,𝑋𝑖Xi 是第 𝑖i 只麋鹿的位置,𝑋𝑙𝑒𝑎𝑑𝑒𝑟Xleader 是领导者的位置, 𝑟𝑎𝑛𝑑rand 是一个0到1之间的随机数。
-
混沌扰动策略: 为了增强算法的全局搜索能力,防止陷入局部最优,引入混沌扰动策略。具体步骤如下:
-
计算当前种群的最优适应度值 𝑓𝑏𝑒𝑠𝑡fbest 和最差适应度值 𝑓𝑤𝑜𝑟𝑠𝑡fworst。
-
如果当前迭代次数达到预设的扰动周期,或者当前最优适应度值在连续若干代没有改善,则对领导者进行混沌扰动。
-
使用PWLCM混沌映射生成一个随机数 𝑟∈[0,1]r∈[0,1]。
-
对领导者的每个维度进行扰动,扰动公式如下:
scss
X_{leader, j} = X_{leader, j} + r * (ub - lb)
其中,𝑋𝑙𝑒𝑎𝑑𝑒𝑟,𝑗Xleader,j 是领导者第 𝑗j 个维度的位置,𝑢𝑏ub 和 𝑙𝑏lb 分别是该维度的上下界。
-
-
更新领导者: 更新领导者,如果新的位置优于当前领导者,则更新领导者。
-
判断是否满足终止条件: 如果满足终止条件(如达到最大迭代次数),则算法终止,输出最优解;否则,返回步骤2。
4. 多无人机协同路径规划模型
4.1 环境建模
为了进行路径规划,需要对无人机所处的环境进行建模。本文采用栅格地图进行环境建模。栅格地图将环境划分为一系列的栅格,每个栅格代表环境中的一个区域,栅格的值表示该区域是否可行。如果栅格的值为1,表示该区域为障碍物;如果栅格的值为0,表示该区域为空闲区域。
4.2 路径表示
本文采用路径点序列来表示无人机的路径。路径点序列是指一系列的路径点,无人机按照路径点序列的顺序依次飞行,从而完成任务。路径点序列的长度可以根据实际需求进行调整。
4.3 约束条件
多无人机协同路径规划需要考虑多种约束条件,包括:
- 避障约束:
无人机必须避开环境中的障碍物,保证飞行安全。
- 通信约束:
无人机之间需要保持通信连接,保证协同任务的顺利进行。
- 能量约束:
无人机的飞行距离受到能量的限制,需要保证无人机的能量充足。
- 冲突避免约束:
无人机之间需要避免冲突,保证飞行安全。
4.4 目标函数
多无人机协同路径规划的目标是最小化路径长度,同时满足各种约束条件。本文采用以下目标函数:
ini
f = w_1 * L + w_2 * P + w_3 * C + w_4 * E
其中,𝐿L 是路径长度,𝑃P 是惩罚项,用于惩罚违反避障约束的路径,𝐶C 是惩罚项,用于惩罚违反通信约束的路径,𝐸E 是惩罚项,用于惩罚违反能量约束的路径,𝑤1,𝑤2,𝑤3,𝑤4w1,w2,w3,w4 是权重系数,用于调节各项的权重。
本文提出了一种基于PWLCM混沌映射的麋鹿群优化算法(PWLCM-EHO),并将其应用于多无人机协同路径规划问题。通过引入PWLCM混沌映射,增强了EHO算法的全局搜索能力,从而避免陷入局部最优,有效提高了路径规划的效率和质量。仿真实验结果表明,PWLCM-EHO算法在多无人机协同路径规划中具有良好的性能,能够在复杂的环境中生成安全、有效的飞行路径。
未来的研究方向包括:
-
研究更有效的混沌映射方法,进一步提高算法的全局搜索能力。
-
考虑动态环境下的多无人机协同路径规划问题。
-
将PWLCM-EHO算法应用于实际的无人机平台上进行验证。
-
研究多目标优化方法,同时考虑多个目标,如路径长度、安全性、能量消耗等。
-
探索更先进的协同策略,提高多无人机协同任务的效率和鲁棒性。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇