✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着数据挖掘和机器学习技术的快速发展,回归预测在诸多领域发挥着至关重要的作用,例如金融预测、环境监测、工程优化等。传统的回归模型,如线性回归、支持向量回归等,往往难以处理非线性、高维的复杂数据。近年来,深度学习凭借其强大的特征学习能力,在回归预测任务中取得了显著的成果。本文将探讨一种基于深度置信网络(Deep Belief Network, DBN)融合极限学习机(Extreme Learning Machine, ELM)的多输入单输出回归预测模型,旨在充分利用DBN的深度特征提取能力和ELM的快速学习能力,以提高回归预测的精度和效率。
一、深度置信网络(DBN)的深度特征提取能力
深度置信网络是一种概率生成模型,由多个受限玻尔兹曼机(Restricted Boltzmann Machine, RBM)堆叠而成。RBM是一种两层无向图模型,包含一个可见层和一个隐藏层,层内节点之间没有连接,层间节点全连接。RBM通过最大化训练数据的似然函数来学习可见层和隐藏层之间的连接权重,从而将输入数据编码成一种低维、高阶的抽象表示。
DBN通过逐层贪婪训练的方式进行学习。首先,训练第一个RBM,将输入数据作为可见层输入,学习得到第一个隐藏层的特征表示。然后,将第一个隐藏层的输出作为第二个RBM的可见层输入,学习得到第二个隐藏层的特征表示。以此类推,逐层训练多个RBM,最终得到一个深层网络结构。
DBN的优点在于其能够自动地学习输入数据的层次化特征表示。浅层RBM学习数据的低阶特征,深层RBM学习数据的高阶特征。通过逐层提取特征,DBN能够有效地降低数据的维度,并提取出对回归预测任务有用的抽象特征。此外,DBN的生成模型特性使其能够对输入数据进行概率建模,从而更好地处理噪声和不确定性。
二、极限学习机(ELM)的快速学习能力
极限学习机是一种单层前馈神经网络(Single-layer Feedforward Neural Network, SLFN),其输入权重和隐藏层偏置是随机生成的,无需进行迭代训练。ELM通过最小化输出误差的平方和来确定输出权重,通常采用最小二乘法进行求解。
ELM的学习过程非常简单高效。首先,随机生成输入权重和隐藏层偏置;然后,计算隐藏层的输出矩阵;最后,通过最小二乘法求解输出权重。由于无需迭代训练,ELM的学习速度非常快,并且具有良好的泛化性能。
ELM的优点在于其学习速度快、泛化能力强、参数调整少。然而,ELM的缺点在于其隐藏层节点数目需要预先设定,并且随机生成的输入权重和隐藏层偏置可能导致网络结构不稳定。
三、DBN-ELM深度置信网络融合极限学习机模型
为了充分利用DBN的深度特征提取能力和ELM的快速学习能力,本文提出一种基于DBN融合ELM的多输入单输出回归预测模型。该模型首先使用DBN对输入数据进行深度特征提取,然后将提取到的高阶特征作为ELM的输入,进行回归预测。
具体而言,DBN-ELM模型的构建步骤如下:
-
数据预处理: 对输入数据进行标准化或归一化处理,使其处于同一尺度范围内,以提高模型的学习效率和泛化能力。
-
DBN训练: 使用DBN对预处理后的数据进行逐层贪婪训练,学习得到数据的深度特征表示。
-
特征提取: 将训练好的DBN的最后一个隐藏层的输出作为特征向量提取出来。
-
ELM训练: 将提取到的特征向量作为ELM的输入,进行ELM的训练,确定ELM的输出权重。
-
回归预测: 将新的输入数据通过DBN进行特征提取,然后将提取到的特征向量作为ELM的输入,进行回归预测。
四、DBN-ELM模型的优势与挑战
DBN-ELM模型具有以下优势:
- 深度特征提取:
DBN能够自动地学习输入数据的层次化特征表示,提取出对回归预测任务有用的抽象特征。
- 快速学习:
ELM的学习速度非常快,能够快速地完成回归预测模型的训练。
- 泛化能力强:
DBN和ELM都具有良好的泛化能力,能够有效地避免过拟合问题。
然而,DBN-ELM模型也面临一些挑战:
- DBN参数调整:
DBN的层数、每层RBM的节点数目、学习率等参数需要根据具体问题进行调整,以获得最佳的特征提取效果。
- ELM隐藏层节点数目确定:
ELM的隐藏层节点数目需要预先设定,如何确定合适的节点数目是一个需要解决的问题。
- 计算复杂度:
DBN的训练过程需要消耗大量的计算资源,特别是当数据量很大时。
五、实验结果与分析
为了验证DBN-ELM模型的有效性,我们进行了实验,将其应用于多个benchmark回归数据集。实验结果表明,DBN-ELM模型在回归预测精度方面优于传统的回归模型,如线性回归、支持向量回归,以及单一的DBN或ELM模型。
例如,在一个能源消耗预测的案例中,我们将DBN-ELM模型与传统的回归模型进行了比较。实验结果表明,DBN-ELM模型能够更准确地预测未来的能源消耗量,从而为能源管理部门提供更有价值的参考信息。
六、结论与展望
本文提出了一种基于DBN融合ELM的多输入单输出回归预测模型。该模型充分利用了DBN的深度特征提取能力和ELM的快速学习能力,能够有效地提高回归预测的精度和效率。实验结果表明,DBN-ELM模型在多个回归数据集上取得了良好的性能。
未来研究方向包括:
- DBN结构优化:
研究更有效的DBN结构,例如堆叠自编码器(Stacked Autoencoder, SAE)、卷积深度置信网络(Convolutional Deep Belief Network, CDBN)等,以进一步提高特征提取效果。
- ELM改进:
研究更稳定的ELM算法,例如核极限学习机(Kernel Extreme Learning Machine, KELM)、增量极限学习机(Incremental Extreme Learning Machine, IELM)等,以提高ELM的泛化能力。
- 模型融合:
研究更有效的模型融合方法,例如集成学习、深度集成学习等,以充分利用不同模型的优势。
- 应用领域拓展:
将DBN-ELM模型应用于更多的实际应用场景,例如金融预测、环境监测、工程优化等,以验证其有效性和适用性。
总而言之,基于DBN融合ELM的多输入单输出回归预测模型具有广阔的应用前景,有望在未来的回归预测领域发挥更加重要的作用。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇