✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
摘要:随着能源转型的加速和分布式能源(Distributed Generation, DG)的渗透率不断提高,配电网正经历着深刻的变革。微电网(Microgrid, MG)作为一种有效集成DG和提升电网灵活性的重要手段,受到广泛关注。然而,单个微电网的容量有限,且存在间歇性电源出力波动的问题。多微电网(Multi-Microgrid, MMG)通过互联互通可以实现能源互补,提高系统可靠性和稳定性。此外,储能系统(Energy Storage System, ESS)在平抑DG出力波动、提供备用容量和提升电网运行经济性方面发挥着关键作用。但对于单个微电网而言,配置储能系统往往面临投资成本高昂、利用率低等问题。因此,共享储能(Shared Energy Storage, SES)的概念应运而生,它可以通过租赁模式为多个微电网提供储能服务,从而降低单个微电网的投资负担并提高储能利用率。本文将探讨含多微电网租赁共享储能的配电网博弈优化调度问题,旨在建立一种有效的模型和算法,实现配电网、多微电网和共享储能系统之间的协同优化,从而提高系统的经济性和可靠性。
关键词:多微电网;共享储能;博弈论;优化调度;租赁模式;配电网
引言
近年来,全球范围内的能源危机和环境问题日益突出,推动了能源结构的转型,可再生能源发电技术得到了迅猛发展。然而,可再生能源的间歇性和波动性对电网的稳定运行提出了挑战。作为应对这一挑战的重要手段,微电网应运而生。微电网通常由分布式电源、储能系统、负荷和控制系统组成,可以在并网或孤网模式下运行,能够有效提高分布式电源的消纳能力,改善电能质量,提高供电可靠性。
随着微电网技术的不断发展,单个微电网的局限性也逐渐显现。例如,单个微电网的容量有限,难以应对大规模负荷变化和分布式电源的波动;此外,单个微电网的资源种类单一,难以实现能源互补。为了克服这些局限性,多微电网的概念被提出。多微电网通过互联互通可以实现能源互补,提高系统运行的灵活性和可靠性。
储能系统作为一种重要的能量管理工具,可以在配电网和微电网中发挥关键作用。它可以平抑分布式电源的出力波动,提供备用容量,参与调频调压,提高电网的稳定性和可靠性。然而,对于单个微电网而言,配置储能系统往往面临投资成本高昂、利用率低等问题。
为了解决上述问题,共享储能的概念应运而生。共享储能可以通过租赁模式为多个微电网提供储能服务,从而降低单个微电网的投资负担并提高储能利用率。在这种模式下,共享储能系统由第三方投资建设和运营,微电网通过租赁储能容量来满足自身的储能需求。
本文将探讨含多微电网租赁共享储能的配电网博弈优化调度问题。我们将建立一个包含配电网、多微电网和共享储能系统的优化模型,并采用博弈论的方法来协调各方利益,最终实现系统的经济性和可靠性。
文献综述
关于多微电网的调度优化问题,已经有大量的研究成果。一些研究侧重于多微电网的集中式优化调度,目标通常是最小化系统运行成本或最大化可再生能源消纳量。例如,文献[1]提出了一种基于模型预测控制的多微电网优化调度方法,考虑了分布式电源的出力预测和负荷预测的不确定性。文献[2]研究了多微电网协同运行的能量管理策略,通过引入虚拟电厂的概念,将多个微电网视为一个整体进行优化调度。
另一些研究则侧重于多微电网的分布式优化调度,目标是实现各个微电网的自治运行,并通过一定的协调机制来实现全局优化。例如,文献[3]提出了一种基于交替方向乘子法的多微电网分布式优化调度方法,实现了各个微电网之间的信息隐私保护。文献[4]研究了一种基于多智能体系统的多微电网协同控制方法,通过智能体之间的协调实现系统的稳定运行。
关于共享储能的研究也日益增多。一些研究侧重于共享储能的容量优化配置问题,目标是最小化共享储能的投资成本和运行成本。例如,文献[5]提出了一种基于遗传算法的共享储能容量优化配置方法,考虑了多个微电网的储能需求和地理位置。文献[6]研究了一种基于两阶段优化的共享储能容量配置方法,第一阶段确定共享储能的投资位置,第二阶段确定共享储能的容量。
另一些研究则侧重于共享储能的运行优化调度问题,目标是提高共享储能的利用率和经济效益。例如,文献[7]提出了一种基于滚动优化的共享储能运行调度方法,考虑了微电网之间的能量交易和共享储能的充放电约束。文献[8]研究了一种基于博弈论的共享储能运行调度方法,通过建立微电网和共享储能之间的博弈模型,实现了各个微电网的利益最大化。
然而,目前的研究大多集中于多微电网或者共享储能的单独优化调度,很少有研究同时考虑多微电网和共享储能的协同优化调度。此外,现有研究大多采用集中式或分布式优化方法,缺乏对多微电网、共享储能和配电网之间利益博弈的深入分析。
模型建立
本文将建立一个包含配电网、多微电网和共享储能系统的优化模型。该模型将考虑以下几个方面:
-
配电网模型: 考虑配电网的网络拓扑、线路参数、负荷需求和电压约束等。配电网的目标是维持电网的稳定运行,满足负荷需求,并尽可能降低网损。
-
多微电网模型: 每个微电网包含分布式电源(如光伏、风电)、储能系统(可以是本地储能,也可以租赁共享储能)和本地负荷。微电网的目标是在满足本地负荷需求的前提下,最大化自身的经济效益。
-
共享储能模型: 共享储能系统由第三方投资建设和运营,通过租赁模式为多个微电网提供储能服务。共享储能的目标是最大化自身的利润。
-
租赁模式: 微电网可以通过租赁共享储能的容量来满足自身的储能需求。租赁费用由双方协商确定。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇