【故障诊断】频域多点峰度重复瞬变提取轴承故障诊断研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要:轴承作为旋转机械的核心部件,其运行状态直接关系到整机的稳定性和安全性。早期故障诊断对于避免灾难性事故、降低维护成本至关重要。传统时域和频域分析方法在复杂工况下诊断精度受限。本文针对这一问题,提出一种基于频域多点峰度重复瞬变提取的轴承故障诊断方法。该方法首先利用快速傅里叶变换(FFT)将振动信号转换到频域,然后计算频域信号的峰度值,并基于峰度值选取多个敏感频率点。接着,通过计算这些频率点附近的重复瞬变特征,进一步强化故障信息,抑制噪声干扰。最后,将提取的特征向量输入到支持向量机(SVM)分类器进行故障诊断。实验结果表明,所提出的方法能够有效地提取轴承早期微弱故障特征,提高故障诊断的准确率和鲁棒性,尤其在信噪比较低的复杂工况下表现突出。

关键词:轴承故障诊断;频域分析;多点峰度;重复瞬变;支持向量机

1 引言

旋转机械广泛应用于工业生产的各个领域,如航空航天、能源电力、交通运输等。轴承作为旋转机械的关键支撑部件,其运行状态直接影响整机的可靠性和安全性。据统计,旋转机械的故障中,轴承故障占有相当高的比例。因此,对轴承进行有效的故障诊断,实现状态监测和预知性维护,具有重要的工程价值和经济效益。

早期轴承故障通常表现为微弱的振动信号,容易被噪声淹没。传统的时域分析方法,如均方根值(RMS)、峰值因子(CF)、峭度(Kurtosis)等,虽然计算简单,但在复杂工况下,容易受到噪声和背景振动的影响,诊断精度较低。频域分析方法,如频谱分析、倒频谱分析、包络解调等,能够将振动信号从时域转换到频域,有效识别故障频率及其谐波成分,但对于早期微弱故障特征的提取仍然存在局限性。

近年来,小波变换、经验模态分解(EMD)等时频分析方法在轴承故障诊断中得到广泛应用。然而,小波变换需要预先选择小波基函数,其性能受主观因素影响较大。EMD算法则存在模态混叠和端点效应等问题,影响分解结果的准确性。

针对上述问题,本文提出一种基于频域多点峰度重复瞬变提取的轴承故障诊断方法。该方法结合了频域分析的优势和峰度值的灵敏性,能够有效地提取轴承早期微弱故障特征,提高故障诊断的准确率和鲁棒性。

2 理论基础

2.1 峰度值

峰度值是一种统计量,用于描述数据分布的峰态特征,即数据分布的尖锐程度。其定义如下:

K = E[(x - μ)^4] / σ^4

其中,x表示数据样本,μ表示数据样本的均值,σ表示数据样本的标准差,E表示期望值。

在轴承故障诊断中,峰度值能够反映信号的冲击成分。当轴承出现局部缺陷时,会产生周期性的冲击振动,导致信号的峰度值显著增大。因此,峰度值可以作为一种有效的故障指标。

2.2 重复瞬变特征

重复瞬变特征是指在故障信号中,周期性出现的短时能量突变现象。这种瞬变现象通常是由轴承的局部缺陷引起的,如滚珠缺陷、内圈缺陷、外圈缺陷等。重复瞬变特征能够反映故障的严重程度和故障类型。

3 方法实现

本文提出的基于频域多点峰度重复瞬变提取的轴承故障诊断方法,主要包括以下几个步骤:

3.1 数据采集和预处理

利用振动传感器采集轴承的振动信号。为了去除噪声干扰,对采集到的原始信号进行带通滤波,保留感兴趣的频率范围。

3.2 快速傅里叶变换 (FFT)

利用快速傅里叶变换 (FFT) 将预处理后的时域振动信号转换为频域信号。FFT能够将信号分解成不同频率成分的叠加,便于识别故障频率及其谐波成分。

3.3 频域峰度值计算和敏感频率点选取

计算频域信号的峰度值。由于轴承故障往往导致特定频率的能量突变,因此,峰度值较高的频率点往往与故障相关。选取峰度值最高的几个频率点作为敏感频率点。

3.4 重复瞬变特征提取

针对每个敏感频率点,选取其附近的频率范围,并计算该频率范围内信号的包络谱。包络谱能够反映信号的调制信息,突出周期性冲击成分。然后,检测包络谱中的峰值,并计算相邻峰值之间的时间间隔。如果时间间隔与轴承的特征频率相吻合,则认为该频率点存在重复瞬变特征。

3.5 特征向量构建

将提取的敏感频率点及其对应的重复瞬变特征组合成特征向量。该特征向量能够全面反映轴承的故障信息。

3.6 故障诊断

将提取的特征向量输入到支持向量机(SVM)分类器进行故障诊断。SVM是一种强大的模式识别算法,能够有效地处理高维数据,具有良好的泛化能力。

4 实验验证

为了验证本文所提出方法的有效性,选取某型号滚动轴承进行实验。实验数据包括正常状态、内圈故障、外圈故障和滚动体故障四种状态。每种状态采集一定数量的样本,并将其分为训练集和测试集。

实验结果表明,本文所提出的方法能够有效地提取轴承早期微弱故障特征,提高故障诊断的准确率。与传统的时域和频域分析方法相比,该方法在信噪比较低的复杂工况下表现更加突出,具有更高的鲁棒性。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值