✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
分布式能源(Distributed Generation, DG)作为一种重要的能源供给方式,在解决能源危机、提高能源利用效率、降低环境污染等方面具有显著优势。DG系统可以部署在用户侧,实现能源的就地生产和消费,减少输电损耗,提高供电可靠性。然而,DG的选址与定容直接影响其经济效益、环境效益和系统可靠性,是一个复杂的优化问题。不合理的DG选址与定容不仅无法发挥其优势,反而可能导致电网电压波动、潮流阻塞、保护协调困难等问题。因此,如何科学合理地进行DG选址与定容,是推动DG技术发展和应用的关键。
本文将探讨基于非支配排序多目标遗传优化算法(Non-dominated Sorting Genetic Algorithm II, NSGA-II)解决DG选址与定容问题的方法。首先,我们将阐述DG选址与定容问题的特点及其面临的挑战。其次,我们将详细介绍NSGA-II算法的基本原理和步骤,并分析其在解决多目标优化问题方面的优势。最后,我们将探讨如何将NSGA-II算法应用于DG选址与定容问题,构建相应的优化模型和评价指标,并对结果进行分析讨论。
一、分布式能源选址与定容问题概述
DG选址与定容问题旨在确定DG在电网中的最佳位置和容量,以实现特定的优化目标。该问题涉及多个相互冲突的目标,例如:
- 经济性目标:
包括投资成本、运行维护成本、燃料成本等,目标是降低DG系统的总成本,提高经济效益。
- 可靠性目标:
包括提高系统的供电可靠性、降低电压波动、减少停电时间等,目标是提高电力系统的稳定性和安全性。
- 环境目标:
包括减少温室气体排放、降低污染物排放等,目标是减少DG系统对环境的影响,促进可持续发展。
此外,DG选址与定容还受到诸多约束条件的限制,例如:
- 电网约束:
包括节点电压限制、线路容量限制、潮流平衡约束等,确保DG接入后电网的安全稳定运行。
- DG自身约束:
包括DG的容量限制、运行特性限制等,符合DG的技术规范和运行要求。
- 环境约束:
包括噪声限制、排放限制等,符合当地的环保法规。
- 地理约束:
包括土地利用限制、空间限制等,符合DG的实际部署条件。
由于目标函数的复杂性和约束条件的多样性,DG选址与定容问题属于典型的多目标优化问题,传统的单目标优化方法难以有效解决。
二、非支配排序多目标遗传优化算法(NSGA-II)
NSGA-II是一种基于遗传算法的多目标优化方法,由Deb等人于2002年提出。它在传统遗传算法的基础上进行了改进,引入了非支配排序和拥挤度距离的概念,有效地解决了多目标优化问题中的Pareto前沿解集的保持和均匀分布问题。
NSGA-II算法的基本步骤如下:
- 初始化种群:
随机生成一定数量的个体,每个个体代表一个可能的DG选址与定容方案。
- 非支配排序:
对种群中的个体进行非支配排序,将个体划分为不同的等级。等级越高的个体,其目标函数值越优,且不被其他个体支配。
- 计算拥挤度距离:
对每个等级内的个体计算拥挤度距离。拥挤度距离反映了个体周围解的密集程度,拥挤度距离越大的个体,其周围的解越稀疏。
- 选择:
基于非支配等级和拥挤度距离进行选择。优先选择等级高的个体,如果等级相同,则选择拥挤度距离大的个体。这种选择策略保证了种群的收敛性和多样性。
- 交叉:
对选择出的个体进行交叉操作,生成新的个体。交叉操作可以交换个体之间的部分信息,产生更优的解。
- 变异:
对交叉后的个体进行变异操作,引入新的基因,增加种群的多样性。
- 更新种群:
将父代种群和子代种群合并,并从中选择出一定数量的个体作为新的种群,进入下一代循环。
- 终止条件判断:
判断是否满足终止条件,例如达到最大迭代次数或目标函数值的收敛阈值。如果满足终止条件,则输出Pareto前沿解集,否则返回步骤2。
NSGA-II算法的优势在于:
- 保持Pareto前沿解集:
通过非支配排序,NSGA-II能够有效地找到多个Pareto最优解,形成Pareto前沿解集,为决策者提供多种选择。
- 保证解的多样性:
通过拥挤度距离,NSGA-II能够避免种群聚集到局部最优解,保证解的多样性,提高算法的全局搜索能力。
- 计算复杂度较低:
NSGA-II的计算复杂度相对较低,适用于解决大规模优化问题。
三、基于NSGA-II的DG选址与定容模型
将NSGA-II算法应用于DG选址与定容问题,需要构建相应的优化模型和评价指标。一个典型的优化模型可以包括以下部分:
- 决策变量:
DG的位置(通常是节点编号)和容量。
- 目标函数:
包括经济性目标、可靠性目标和环境目标。例如,经济性目标可以是DG系统的总成本最小化,可靠性目标可以是系统供电可靠性指标(如SAIDI, SAIFI)最大化,环境目标可以是温室气体排放最小化。
- 约束条件:
包括电网约束、DG自身约束、环境约束和地理约束。
⛳️ 运行结果
🔗 参考文献
[1] 莫涵,冯燕,杜坤,等.基于差分进化快速非支配排序的供水管网多目标优化设计[J].中国水运:下半月, 2018(11):2.DOI:CNKI:SUN:ZSUX.0.2018-11-090.
[2] 霍飒.计及源荷时序特性的城市综合能源站优化配置研究[D].河北农业大学,2023.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇