【分布式能源的选址与定容】基于非支配排序多目标遗传优化算法求解分布式能源的选址与定容附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

分布式能源(Distributed Generation, DG)作为一种重要的能源供给方式,在解决能源危机、提高能源利用效率、降低环境污染等方面具有显著优势。DG系统可以部署在用户侧,实现能源的就地生产和消费,减少输电损耗,提高供电可靠性。然而,DG的选址与定容直接影响其经济效益、环境效益和系统可靠性,是一个复杂的优化问题。不合理的DG选址与定容不仅无法发挥其优势,反而可能导致电网电压波动、潮流阻塞、保护协调困难等问题。因此,如何科学合理地进行DG选址与定容,是推动DG技术发展和应用的关键。

本文将探讨基于非支配排序多目标遗传优化算法(Non-dominated Sorting Genetic Algorithm II, NSGA-II)解决DG选址与定容问题的方法。首先,我们将阐述DG选址与定容问题的特点及其面临的挑战。其次,我们将详细介绍NSGA-II算法的基本原理和步骤,并分析其在解决多目标优化问题方面的优势。最后,我们将探讨如何将NSGA-II算法应用于DG选址与定容问题,构建相应的优化模型和评价指标,并对结果进行分析讨论。

一、分布式能源选址与定容问题概述

DG选址与定容问题旨在确定DG在电网中的最佳位置和容量,以实现特定的优化目标。该问题涉及多个相互冲突的目标,例如:

  • 经济性目标:

     包括投资成本、运行维护成本、燃料成本等,目标是降低DG系统的总成本,提高经济效益。

  • 可靠性目标:

     包括提高系统的供电可靠性、降低电压波动、减少停电时间等,目标是提高电力系统的稳定性和安全性。

  • 环境目标:

     包括减少温室气体排放、降低污染物排放等,目标是减少DG系统对环境的影响,促进可持续发展。

此外,DG选址与定容还受到诸多约束条件的限制,例如:

  • 电网约束:

     包括节点电压限制、线路容量限制、潮流平衡约束等,确保DG接入后电网的安全稳定运行。

  • DG自身约束:

     包括DG的容量限制、运行特性限制等,符合DG的技术规范和运行要求。

  • 环境约束:

     包括噪声限制、排放限制等,符合当地的环保法规。

  • 地理约束:

     包括土地利用限制、空间限制等,符合DG的实际部署条件。

由于目标函数的复杂性和约束条件的多样性,DG选址与定容问题属于典型的多目标优化问题,传统的单目标优化方法难以有效解决。

二、非支配排序多目标遗传优化算法(NSGA-II)

NSGA-II是一种基于遗传算法的多目标优化方法,由Deb等人于2002年提出。它在传统遗传算法的基础上进行了改进,引入了非支配排序和拥挤度距离的概念,有效地解决了多目标优化问题中的Pareto前沿解集的保持和均匀分布问题。

NSGA-II算法的基本步骤如下:

  1. 初始化种群:

     随机生成一定数量的个体,每个个体代表一个可能的DG选址与定容方案。

  2. 非支配排序:

     对种群中的个体进行非支配排序,将个体划分为不同的等级。等级越高的个体,其目标函数值越优,且不被其他个体支配。

  3. 计算拥挤度距离:

     对每个等级内的个体计算拥挤度距离。拥挤度距离反映了个体周围解的密集程度,拥挤度距离越大的个体,其周围的解越稀疏。

  4. 选择:

     基于非支配等级和拥挤度距离进行选择。优先选择等级高的个体,如果等级相同,则选择拥挤度距离大的个体。这种选择策略保证了种群的收敛性和多样性。

  5. 交叉:

     对选择出的个体进行交叉操作,生成新的个体。交叉操作可以交换个体之间的部分信息,产生更优的解。

  6. 变异:

     对交叉后的个体进行变异操作,引入新的基因,增加种群的多样性。

  7. 更新种群:

     将父代种群和子代种群合并,并从中选择出一定数量的个体作为新的种群,进入下一代循环。

  8. 终止条件判断:

     判断是否满足终止条件,例如达到最大迭代次数或目标函数值的收敛阈值。如果满足终止条件,则输出Pareto前沿解集,否则返回步骤2。

NSGA-II算法的优势在于:

  • 保持Pareto前沿解集:

     通过非支配排序,NSGA-II能够有效地找到多个Pareto最优解,形成Pareto前沿解集,为决策者提供多种选择。

  • 保证解的多样性:

     通过拥挤度距离,NSGA-II能够避免种群聚集到局部最优解,保证解的多样性,提高算法的全局搜索能力。

  • 计算复杂度较低:

     NSGA-II的计算复杂度相对较低,适用于解决大规模优化问题。

三、基于NSGA-II的DG选址与定容模型

将NSGA-II算法应用于DG选址与定容问题,需要构建相应的优化模型和评价指标。一个典型的优化模型可以包括以下部分:

  • 决策变量:

     DG的位置(通常是节点编号)和容量。

  • 目标函数:

     包括经济性目标、可靠性目标和环境目标。例如,经济性目标可以是DG系统的总成本最小化,可靠性目标可以是系统供电可靠性指标(如SAIDI, SAIFI)最大化,环境目标可以是温室气体排放最小化。

  • 约束条件:

     包括电网约束、DG自身约束、环境约束和地理约束。

⛳️ 运行结果

🔗 参考文献

[1] 莫涵,冯燕,杜坤,等.基于差分进化快速非支配排序的供水管网多目标优化设计[J].中国水运:下半月, 2018(11):2.DOI:CNKI:SUN:ZSUX.0.2018-11-090.

[2] 霍飒.计及源荷时序特性的城市综合能源站优化配置研究[D].河北农业大学,2023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值