【故障诊断】用于轴承故障诊断的性能增强时变形态滤波方法及用于轴承断层特征提取的增强数学形态算子研究

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

好的,这是一篇关于“用于轴承故障诊断的性能增强时变形态滤波方法及用于轴承断层特征提取的增强数学形态算子研究”的论文,采用正式的学术风格写作,并力求内容详实深入。

用于轴承故障诊断的性能增强时变形态滤波方法及用于轴承断层特征提取的增强数学形态算子研究

摘要

滚动轴承是旋转机械的关键组成部分,其运行状态直接影响着设备的可靠性和安全性。轴承故障诊断技术是保障设备健康运行的重要手段。针对传统轴承故障诊断方法在非平稳、强噪声环境下诊断精度不足的问题,本文深入研究了性能增强的时变形态滤波方法和增强数学形态算子,并将其应用于轴承故障断层特征提取,旨在提高轴承故障诊断的准确性和鲁棒性。首先,本文分析了轴承故障振动信号的特点,指出传统方法的局限性。其次,详细阐述了时变形态滤波的基本原理,并提出一种性能增强的时变形态滤波算法,通过自适应调整结构元素,优化滤波性能。然后,针对轴承断层特征提取,提出了一种增强数学形态算子,并对其性质进行了深入研究。最后,通过仿真实验和实际轴承故障实验验证了本文所提出的方法的有效性和优越性。实验结果表明,该方法能够在复杂环境下有效地提取轴承故障特征,提高故障诊断的精度和可靠性。

关键词: 滚动轴承,故障诊断,时变形态滤波,数学形态算子,特征提取,非平稳信号

1. 引言

滚动轴承作为旋转机械的关键支撑部件,广泛应用于电力、冶金、化工、航空航天等工业领域。由于长时间的运行、恶劣的工作环境以及不当的操作维护,轴承极易发生各种故障,如滚道磨损、滚珠剥落、保持架断裂等。轴承故障若未能及时诊断和排除,可能导致设备性能下降、效率降低,甚至引发重大安全事故。因此,对滚动轴承进行可靠的故障诊断具有重要的理论意义和工程应用价值。

传统的轴承故障诊断方法主要依赖于时域、频域和时频域分析。时域分析方法简单直观,但难以提取复杂故障特征。频域分析方法适用于平稳信号分析,但在非平稳、强噪声环境下表现欠佳。时频域分析方法,如短时傅里叶变换(STFT)和小波变换(WT),虽然能够提供信号的时频信息,但在分辨率和计算复杂度方面存在一定的局限性。

近年来,数学形态学(Mathematical Morphology, MM)作为一种非线性信号处理方法,因其在噪声抑制、特征提取和边缘检测等方面的优势,被广泛应用于故障诊断领域。传统的数学形态学方法采用固定形状和尺寸的结构元素,在处理复杂振动信号时,难以有效提取故障特征。此外,由于轴承故障振动信号通常具有非平稳特性,传统的基于固定结构元素的数学形态学方法难以适应信号的变化,导致诊断精度降低。

为了克服传统方法的局限性,本文提出一种性能增强的时变形态滤波方法和增强数学形态算子,并将其应用于轴承故障断层特征提取。该方法通过自适应调整结构元素,优化滤波性能,并设计新的数学形态算子,以增强对断层特征的敏感性。

2. 轴承故障诊断理论基础

2.1 轴承故障振动信号分析

轴承故障通常会引起周期性的冲击振动。当轴承的某个部件发生局部缺陷时,如滚道磨损或滚珠剥落,该缺陷在滚动过程中会周期性地冲击其他部件,产生一系列具有特定频率的冲击振动。这些冲击振动信号往往淹没在噪声中,且呈现出非平稳的特性。

轴承故障特征频率的计算公式如下:

  • 内圈故障频率 (f<sub>i</sub>):

     f<sub>i</sub> = (N/2) * f<sub>r</sub> * (1 + d/D * cosα)

  • 外圈故障频率 (f<sub>o</sub>):

     f<sub>o</sub> = (N/2) * f<sub>r</sub> * (1 - d/D * cosα)

  • 滚珠故障频率 (f<sub>b</sub>):

     f<sub>b</sub> = (D/2d) * f<sub>r</sub> * [1 - (d/D)<sup>2</sup> * cos<sup>2</sup>α]

  • 保持架故障频率 (f<sub>c</sub>):

     f<sub>c</sub> = (1/2) * f<sub>r</sub> * (1 - d/D * cosα)

其中:

  • N:滚珠数量

  • f<sub>r</sub>:轴承旋转频率

  • d:滚珠直径

  • D:轴承节圆直径

  • α:接触角

2.2 数学形态学基本原理

数学形态学是一种基于集合论的非线性信号处理方法,通过结构元素对信号进行探测和变换,从而实现特征提取、噪声抑制等目的。其基本运算包括:

  • 膨胀 (Dilation):

     A ⊕ B = {z | z = a + b, a ∈ A, b ∈ B}

  • 腐蚀 (Erosion):

     A ⊖ B = {z | z + b ∈ A, ∀b ∈ B}

  • 开运算 (Opening):

     A ○ B = (A ⊖ B) ⊕ B

  • 闭运算 (Closing):

     A • B = (A ⊕ B) ⊖ B

其中:

  • A:待处理的信号集合

  • B:结构元素集合

  • ⊕:膨胀运算符

  • ⊖:腐蚀运算符

  • ○:开运算运算符

  • •:闭运算运算符

开运算能够平滑信号的凸起部分,去除小于结构元素的尖峰噪声。闭运算能够平滑信号的凹陷部分,填充小于结构元素的谷底噪声。

3. 性能增强的时变形态滤波方法

3.1 时变形态滤波的基本原理

时变形态滤波是一种自适应的数学形态学方法,其核心思想是根据信号的局部特征动态调整结构元素的形状和尺寸。通过这种方式,时变形态滤波能够更好地适应信号的变化,提高滤波性能。

时变形态滤波的关键在于结构元素的自适应选择。常用的自适应策略包括:

  • 基于信号局部方差:

     根据信号的局部方差自适应调整结构元素的尺寸。在信号变化剧烈的区域,采用较小的结构元素;在信号平稳的区域,采用较大的结构元素。

  • 基于信号梯度:

     根据信号的梯度自适应调整结构元素的形状。在信号边缘区域,采用与边缘方向垂直的结构元素;在信号平滑区域,采用圆形或方形结构元素。

  • 基于信号能量:

     根据信号的能量自适应调整结构元素的尺寸和形状。

3.2 性能增强的时变形态滤波算法

为了进一步提高时变形态滤波的性能,本文提出一种性能增强的时变形态滤波算法,该算法结合了信号的局部方差和梯度信息,实现结构元素的自适应调整。

具体步骤如下:

  1. 计算信号的局部方差 (σ<sup>2</sup>(n)) 和梯度 (g(n))。

  2. 根据局部方差和梯度,计算结构元素的尺寸 (r(n)) 和形状参数 (θ(n))。

    其中:

    • r<sub>min</sub>:最小结构元素尺寸

    • r<sub>max</sub>:最大结构元素尺寸

    • k<sub>1</sub>:调整系数

    • arctan(·):反正切函数

    • 尺寸调整:

       r(n) = r<sub>min</sub> + (r<sub>max</sub> - r<sub>min</sub>) * exp(-k<sub>1</sub> * σ<sup>2</sup>(n))

    • 形状参数调整:

       θ(n) = arctan(g(n))

  3. 构建时变结构元素 B(n),其形状和尺寸由 r(n) 和 θ(n) 决定。 例如,可以使用椭圆结构元素,其长轴为 r(n),短轴为 r(n)/2,长轴方向与 θ(n) 平行。

  4. 对信号进行时变形态滤波。 可以采用开运算或闭运算,也可以将两者结合使用。

4. 用于轴承断层特征提取的增强数学形态算子研究

4.1 传统数学形态算子的局限性

传统的数学形态算子,如开运算和闭运算,虽然能够抑制噪声和提取信号的包络,但在处理复杂轴承故障信号时,往往难以有效地提取断层特征。主要原因在于:

  • 固定结构元素:

     传统的数学形态算子采用固定形状和尺寸的结构元素,难以适应信号的非平稳特性。

  • 对突变信号的平滑作用:

     开运算和闭运算本质上是一种平滑滤波器,可能导致断层特征的模糊或消失。

4.2 增强数学形态算子的设计

为了克服传统算子的局限性,本文提出一种增强数学形态算子,专门用于提取轴承断层特征。该算子基于形态梯度(Morphological Gradient)的思想,并结合了差分运算,以增强对突变信号的敏感性。

增强数学形态算子的定义如下:

增强形态梯度 (Enhanced Morphological Gradient, EMG):

EMG(A) = |(A ⊕ B) - (A ⊖ B)| + |(A - (A ⊖ B)) - ((A ⊕ B) - A)|

其中:

  • A:待处理的信号

  • B:结构元素

  • |·|:绝对值运算符

该算子的第一项 |(A ⊕ B) - (A ⊖ B)| 是传统的形态梯度,它反映了信号的整体变化趋势。第二项 |(A - (A ⊖ B)) - ((A ⊕ B) - A)| 是对信号凸起和凹陷部分的差分运算,能够增强对断层特征的敏感性。

4.3 增强数学形态算子的性质研究

该增强数学形态算子具有以下性质:

  • 对断层特征的增强作用:

     该算子能够有效地增强信号中的断层特征,突出故障冲击脉冲。

  • 对噪声的抑制作用:

     由于形态梯度本身具有一定的噪声抑制能力,该增强算子也能有效地抑制噪声干扰。

  • 对结构元素的敏感性:

     结构元素的选择对算子的性能有重要影响。应根据信号的特点选择合适的结构元素,以获得最佳的特征提取效果。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值