【齿轮系统故障跟踪】基于现场测量的传递路径分析方法研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

齿轮系统作为旋转机械的核心组成部分,其运行状态直接影响设备的整体性能和可靠性。早期故障诊断对于预防重大事故至关重要。然而,现场运行的齿轮系统往往受到复杂的工况、噪声干扰以及难以安装传感器的限制,使得传统故障诊断方法面临诸多挑战。本文围绕“基于现场测量的传递路径分析方法”对齿轮系统故障跟踪展开研究,旨在探讨一种能够在复杂工况下有效追踪故障源、识别故障模式的实用性方法。本文首先概述了齿轮系统故障诊断的现状及挑战,其次深入分析了传递路径分析(TPA)的基本原理,并着重讨论了基于现场测量的TPA方法在齿轮系统中的应用。最后,展望了该领域的研究方向和潜在的应用价值。

关键词: 齿轮系统,故障诊断,传递路径分析,现场测量,故障跟踪

1. 引言

齿轮系统广泛应用于各种工业设备中,例如风力发电机、汽车、航空发动机以及精密机床等。其复杂的工作环境和承受的高载荷导致齿轮系统容易出现各种故障,如齿面磨损、点蚀、裂纹、断齿等。这些故障不仅会降低设备的运行效率,甚至可能引发严重的事故,造成巨大的经济损失和人员伤亡。因此,对齿轮系统进行准确、及时的故障诊断具有重要的现实意义。

传统的齿轮系统故障诊断方法主要依赖于振动分析、油液分析、温度分析等。振动分析通过监测齿轮箱的振动信号,提取特征频率和幅值来判断齿轮的状态。油液分析则通过分析润滑油的成分变化,检测齿轮磨损产生的金属颗粒。温度分析则通过监测齿轮箱的温度变化来判断是否存在异常摩擦或过载。然而,这些方法在现场应用中往往面临诸多挑战:

  • 复杂的工况干扰:

     现场运行的齿轮系统通常受到复杂的工况影响,例如负载波动、转速变化等,这些因素会干扰振动信号的分析,降低诊断的准确性。

  • 环境噪声的干扰:

     工业现场通常存在各种噪声源,例如电机噪声、风扇噪声等,这些噪声会淹没齿轮故障产生的微弱信号,增加故障诊断的难度。

  • 传感器安装的限制:

     由于空间限制和结构限制,在齿轮箱内部安装传感器往往比较困难,这使得难以获取关键部位的振动信息,影响故障诊断的效果。

为了解决上述问题,近年来,基于传递路径分析(Transfer Path Analysis,TPA)的故障诊断方法逐渐受到重视。TPA方法通过分析振动能量从激励源到响应点的传递路径,可以有效地追踪故障源,识别故障模式,并评估各个传递路径对响应点的贡献。

2. 传递路径分析(TPA)的基本原理

传递路径分析(TPA)是一种基于传递函数的结构噪声和振动分析方法。它主要通过识别振动源、测量传递路径的传递函数以及响应点的振动信号,从而确定振动能量从激励源到响应点的传递关系。

X:响应点的振动信号向量(通常为频域信号);

H:传递函数矩阵,描述了从各个激励源到响应点的振动传递特性;

F:激励源的力向量(通常为频域力)。

在进行TPA分析时,主要分为以下几个步骤:

  • 确定振动源:

     通过对系统的分析,确定潜在的振动激励源。在齿轮系统中,齿轮啮合、轴承运行、电机运转等都可能是振动源。

  • 测量传递函数:

     利用激振器或者冲击锤等激励方式,测量从各个激励源到响应点的传递函数。传递函数描述了振动能量在不同频率下的传递特性。

  • 测量响应信号:

     在目标响应点(例如齿轮箱壳体)测量振动信号。

  • 计算贡献量:

     利用测量的传递函数和响应信号,计算各个激励源对响应点的贡献量。贡献量反映了每个激励源对响应点的振动能量贡献程度,可以帮助识别主要的故障源。

3. 基于现场测量的TPA方法在齿轮系统中的应用

传统的TPA方法通常需要在实验室环境下进行,利用专业的激振设备和传感器进行精确测量。然而,现场运行的齿轮系统往往难以满足这些条件。因此,需要发展基于现场测量的TPA方法,以适应复杂的工况和环境。

基于现场测量的TPA方法主要面临以下几个挑战:

  • 难以直接测量激励力:

     在现场运行的齿轮系统中,难以直接测量齿轮啮合力、轴承作用力等激励力。

  • 传递函数的准确测量:

     现场环境复杂,噪声干扰大,难以准确测量传递函数。

  • 响应信号的提取:

     齿轮系统产生的振动信号通常比较微弱,容易被环境噪声淹没,难以提取有效的故障信息。

针对这些挑战,可以采用以下技术和方法:

  • 虚拟激励力:

     通过测量齿轮箱的表面振动信号,利用反卷积技术或者其他信号处理方法,估计齿轮啮合力等虚拟激励力。

  • 运营传递路径分析(Operational TPA,OTPA):

     OTPA方法利用运行状态下的数据进行分析,不需要额外的激振设备。通过测量多个响应点的振动信号,并结合振源的知识,可以估计传递函数和激励力。

  • 盲源分离(Blind Source Separation,BSS):

     BSS方法可以从混合信号中分离出各个源信号,从而提取齿轮故障产生的微弱信号。常用的BSS方法包括独立成分分析(ICA)、主成分分析(PCA)等。

  • 传感器融合技术:

     将多种传感器(例如加速度传感器、声发射传感器、温度传感器等)的数据进行融合,可以提高故障诊断的准确性和可靠性。

3.1 现场测量数据获取

现场数据获取是TPA分析的基础。传感器选择及安装位置对测量结果至关重要。

  • 加速度传感器:

     常用的振动传感器,应选择灵敏度高、频率响应范围宽的型号。安装位置应尽可能靠近潜在的故障源,例如齿轮箱壳体、轴承座等。多个加速度传感器可以组成阵列,用于空间信号处理,提高信噪比。

  • 声发射传感器:

     对高频信号敏感,可以检测齿轮表面微小的裂纹和损伤。安装位置应避免强电磁干扰,并确保传感器与被测表面紧密接触。

  • 转速传感器:

     用于测量齿轮轴的转速,可以作为同步触发信号,用于对振动信号进行时域平均,降低随机噪声的影响。

  • 电流传感器:

     监测电机电流的变化,可以反映负载的变化情况。电机电流与齿轮系统的运行状态存在一定的相关性,可以作为辅助诊断信息。

数据采集系统应具有足够高的采样率和分辨率,以保证能够捕捉到关键的故障特征。同时,应记录工况信息,例如负载、转速、温度等,以便进行后续的分析和建模。

3.2 基于虚拟激励力的TPA方法

由于在现场难以直接测量齿轮啮合力,可以采用虚拟激励力的概念,通过测量齿轮箱的表面振动信号,利用反卷积技术或者其他信号处理方法,估计齿轮啮合力等虚拟激励力。 例如,可以利用传递函数矩阵的逆矩阵,将响应信号转换为虚拟激励力。 然后,利用虚拟激励力和测量的传递函数,计算各个传递路径的贡献量。

这种方法的关键在于准确估计传递函数。可以在齿轮箱上选取多个参考点,利用冲击锤或者激振器进行锤击测试,测量传递函数。 为了提高测量精度,可以采用平均法,多次锤击取平均值。

3.3 运营传递路径分析 (OTPA)

OTPA方法利用运行状态下的数据进行分析,不需要额外的激振设备,更加适用于现场应用。 OTPA方法首先需要确定潜在的振动源,例如齿轮啮合、轴承运行等。然后,测量多个响应点的振动信号,并结合振源的知识,利用矩阵反演或者其他优化算法,估计传递函数和激励力。

OTPA方法的优点是可以直接利用运行数据进行分析,无需额外的实验。 缺点是计算过程比较复杂,对信号处理技术要求较高。

3.4 基于盲源分离的TPA方法

现场测量的振动信号通常包含多个源信号的混合,例如齿轮啮合信号、轴承信号、电机信号等。 盲源分离(BSS)方法可以从混合信号中分离出各个源信号,从而提取齿轮故障产生的微弱信号。 常用的BSS方法包括独立成分分析(ICA)、主成分分析(PCA)等。

例如,可以利用ICA方法将振动信号分解为多个独立成分,然后分析每个独立成分的频谱特征,识别齿轮故障产生的频率成分。 然后,结合传递函数信息,可以追踪故障源,并评估各个传递路径的贡献量。

4. 案例分析

以某风力发电机的齿轮箱为例,说明基于现场测量的TPA方法在齿轮系统故障跟踪中的应用。

  • 问题描述:

     某风力发电机齿轮箱出现异常振动,怀疑存在齿轮故障。 由于齿轮箱体积庞大,内部结构复杂,难以进行拆卸检查。

  • 测量方案:

     在齿轮箱壳体上选取多个测点,安装加速度传感器和转速传感器。 利用数据采集系统采集振动信号和转速信号。 同时,记录风力发电机的运行参数,例如风速、发电功率等。

  • 数据分析:

     首先,利用时频分析方法对振动信号进行分析,识别齿轮啮合频率及其谐波。 其次,利用包络解调技术提取齿轮故障特征频率。 然后,利用OTPA方法,估计齿轮啮合力等虚拟激励力。 最后,利用传递函数信息,计算各个传递路径的贡献量。

  • 诊断结果:

     分析结果表明,某个齿轮的啮合频率及其谐波幅值明显增大,且包络解调结果显示存在齿轮断齿特征频率。 TPA分析结果表明,该齿轮对齿轮箱整体振动的贡献量最大。 因此,判断该齿轮存在断齿故障。

  • 验证:

     经过拆卸检查,发现该齿轮确实存在断齿。

5. 未来研究方向

  • 传递函数的在线辨识:

     现场工况变化复杂,传递函数也会随之变化。 因此,需要发展能够在线辨识传递函数的算法,提高TPA方法的适应性。

  • 基于深度学习的TPA方法:

     深度学习具有强大的特征提取和模式识别能力。 可以利用深度学习方法对振动信号进行特征提取,并建立故障模式与传递路径之间的映射关系。

  • 考虑非线性因素的TPA方法:

     实际齿轮系统中存在各种非线性因素,例如间隙、摩擦等。 需要发展能够考虑非线性因素的TPA方法,提高诊断的准确性。

  • TPA方法与其他故障诊断方法的融合:

     将TPA方法与振动分析、油液分析等方法进行融合,可以充分利用各种信息,提高故障诊断的可靠性。

6. 结论

基于现场测量的传递路径分析方法在齿轮系统故障跟踪中具有重要的应用价值。 它可以有效地追踪故障源,识别故障模式,并评估各个传递路径的贡献。 随着传感器技术、信号处理技术以及人工智能技术的发展,基于现场测量的TPA方法将会变得更加实用和高效,为齿轮系统的安全可靠运行提供强有力的保障。 进一步的研究应聚焦于提升传递函数的在线辨识能力,融合深度学习等新兴技术,并考虑非线性因素的影响,从而提升TPA方法在复杂工况下的诊断精度和适应性。

⛳️ 运行结果

🔗 参考文献

[1] 孙云嵩.基于信号共振稀疏分解的齿轮故障诊断方法研究[D].湖南大学,2013.DOI:10.7666/d.Y2356282.

[2] 王旭.含裂纹故障的齿轮系统动力学特性研究及其故障特征分析[J].昆明理工大学, 2017.

[3] 金业森.齿轮传动系统裂纹故障机理研究及动态响应分析[D].燕山大学,2023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值