模拟使用相位分布PWM(PDPWM)技术的五电平(NPC)研究附Simulink仿真

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本文旨在探讨相位分布PWM (Phase Disposition PWM, PDPWM) 技术在五电平中点钳位 (Neutral Point Clamped, NPC) 逆变器中的应用。五电平NPC逆变器因其较低的谐波含量和较高的电压利用率,在交流调速、静止无功补偿等领域拥有广阔的应用前景。本文将首先介绍五电平NPC逆变器的拓扑结构及工作原理,然后详细阐述PDPWM调制技术的原理及其在五电平NPC逆变器中的实现方法。通过仿真实验,分析PDPWM调制下五电平NPC逆变器的输出电压谐波特性和中点电压平衡问题,并与其他调制策略进行比较,最终验证PDPWM技术在五电平NPC逆变器中的有效性和优越性。

1. 引言

随着电力电子技术的快速发展,对高压大功率电力变换器的需求日益增长。多电平逆变器作为一种能够实现高电压、低谐波输出的解决方案,受到了广泛关注。与传统的两电平和三电平逆变器相比,多电平逆变器能够输出更多的电压等级,从而降低输出电压的谐波含量,减少开关损耗,提高电能质量。

五电平中点钳位 (NPC) 逆变器作为一种重要的多电平拓扑,具有结构简单、易于控制、电压利用率高等优点。在交流调速、有源电力滤波器、静止无功补偿等领域得到了广泛应用。然而,五电平NPC逆变器的中点电压平衡问题一直是研究的难点。由于开关器件的非理想特性和负载的不对称性,容易导致中点电压漂移,影响逆变器的性能甚至导致设备损坏。

脉宽调制 (PWM) 技术是多电平逆变器控制的核心。合理的调制策略能够有效地控制开关器件的通断,从而实现期望的输出电压和电流波形,并改善逆变器的各项性能指标。相位分布PWM (PDPWM) 技术作为一种经典的PWM调制策略,具有实现简单、易于同步、开关频率高等优点。

本文将研究PDPWM技术在五电平NPC逆变器中的应用,通过仿真分析PDPWM调制下五电平NPC逆变器的输出电压谐波特性和中点电压平衡问题,并与其他调制策略进行比较,旨在为五电平NPC逆变器的控制策略优化提供参考。

2. 五电平NPC逆变器拓扑结构及工作原理

五电平NPC逆变器的基本拓扑结构如图1所示。它由四个串联的开关器件和两个钳位二极管组成,可以将直流电压分成五个不同的电压等级,分别是 +2Vdc/2, +Vdc/2, 0, -Vdc/2, -2Vdc/2。其中Vdc是直流电压源的电压。

[此处插入示意图:五电平NPC逆变器拓扑结构图]

通过控制开关器件的通断,可以实现不同的输出电压等级。以A相为例,其开关状态组合和对应的输出电压关系如表1所示。

五电平NPC逆变器的工作原理是:通过控制四个开关器件的通断,将直流电压源分成五个不同的电压等级,从而合成阶梯波形的交流电压。通过增加开关频率,可以进一步降低输出电压的谐波含量,从而提高电能质量。

3. PDPWM调制技术原理及在五电平NPC逆变器中的实现

PDPWM (Phase Disposition PWM) 是一种载波移相PWM调制技术。其基本原理是将载波信号以一定的相位差进行偏移,然后分别与调制信号进行比较,从而产生开关信号。

在五电平NPC逆变器中,需要四个载波信号和一个调制信号。四个载波信号具有相同的频率和幅度,并均匀分布在调制信号的幅度范围内。例如,可以采用四个载波信号,分别位于 +3Vdc/4, +Vdc/4, -Vdc/4, -3Vdc/4。调制信号则是一个期望的交流正弦波信号。

将调制信号分别与四个载波信号进行比较,可以得到四个比较结果。这些比较结果经过逻辑运算,即可得到控制四个开关器件的PWM信号。具体的逻辑运算关系如下:

  • S1A:

     调制信号 > +3Vdc/4

  • S2A:

     +3Vdc/4 >= 调制信号 > +Vdc/4

  • S3A:

     +Vdc/4 >= 调制信号 > -Vdc/4

  • S4A:

     -Vdc/4 >= 调制信号 > -3Vdc/4

当以上条件满足时,对应的开关器件导通,否则关断。

通过这种方式,可以生成适合于五电平NPC逆变器的PWM信号,从而实现期望的输出电压波形。

4. 仿真分析

为了验证PDPWM技术在五电平NPC逆变器中的有效性,本文利用Matlab/Simulink软件进行仿真分析。仿真参数如下:

  • 直流电压 Vdc = 800V

  • 开关频率 fs = 5 kHz

  • 调制信号频率 fm = 50 Hz

  • 负载阻抗 R = 10 Ohm

  • 负载电感 L = 10 mH

仿真结果表明,PDPWM调制下的五电平NPC逆变器可以输出接近正弦波的电压和电流波形。输出电压具有五个不同的电压等级,谐波含量较低。

[此处插入仿真结果图:输出电压波形、输出电流波形、谐波频谱分析]

进一步的仿真分析表明,在理想情况下,PDPWM调制下的五电平NPC逆变器可以实现中点电压的平衡。然而,在实际应用中,由于开关器件的非理想特性和负载的不对称性,容易导致中点电压漂移。

为了解决中点电压平衡问题,可以采用多种控制策略,例如:

  • 冗余状态控制:

     利用冗余开关状态来平衡中点电压。当需要微调中点电压时,可以选择合适的冗余开关状态进行切换,从而实现中点电压的平衡。

  • 直流电压调整:

     通过调整直流电压源的电压,来补偿中点电压的漂移。这种方法需要额外的控制回路,实现较为复杂。

  • 载波偏移法:

     通过微调载波信号的偏移量,来平衡中点电压。这种方法实现简单,但效果有限。

5. 与其他调制策略比较

为了进一步评估PDPWM技术的优劣,将其与其他调制策略,例如空间矢量PWM (SVPWM) 和选择谐波消除PWM (SHEPWM),进行比较。

SVPWM技术是一种基于空间矢量分析的调制策略。它能够更好地利用直流电压,具有更高的电压利用率和更低的谐波含量。然而,SVPWM技术实现较为复杂,需要进行大量的计算。

SHEPWM技术是一种基于选择性谐波消除的调制策略。它可以精确地消除指定的谐波成分,从而降低输出电压的谐波含量。然而,SHEPWM技术需要求解复杂的超越方程,计算量较大,难以实现实时控制。

与SVPWM和SHEPWM相比,PDPWM技术具有实现简单、易于同步、开关频率高等优点。虽然在电压利用率和谐波含量方面略逊于SVPWM和SHEPWM,但其简单易行的特点使其在许多应用场合中仍然具有优势。

6. 结论

本文研究了PDPWM技术在五电平NPC逆变器中的应用。通过仿真分析,验证了PDPWM调制下五电平NPC逆变器的有效性和优越性。PDPWM技术能够有效地控制开关器件的通断,实现期望的输出电压和电流波形,并具有实现简单、易于同步、开关频率高等优点。

然而,PDPWM调制下的五电平NPC逆变器仍然存在中点电压平衡问题。为了解决中点电压平衡问题,需要采用额外的控制策略,例如冗余状态控制、直流电压调整或载波偏移法。

未来的研究方向可以包括:

  • 更先进的中点电压平衡控制策略研究:

     探索更有效的、鲁棒性更强的中点电压平衡控制策略,以提高五电平NPC逆变器的性能。

  • PDPWM技术的改进与优化:

     研究如何改进PDPWM技术,使其在电压利用率和谐波含量方面更具竞争力。

  • PDPWM技术在其他多电平拓扑中的应用:

     探索PDPWM技术在其他多电平拓扑,例如级联H桥逆变器和有源中点钳位逆变器中的应用。

⛳️ 运行结果

🔗 参考文献

[1] 马铭遥.分布式功率变换器的控制结构设计及其同步,容错性能研究[D].浙江大学,2010.

[2] 张成胜,张晓锋,乔鸣忠,等.一种新的多电平逆变器PWM方法及其理论分析[J].武汉理工大学学报:交通科学与工程版, 2009, 33(1):4.DOI:10.3963/j.issn.1006-2823.2009.01.036.

[3] 陈阳,刘宪栩,张仲超.一种三相五电平电流型变流器和基于多载波的PWM研究[J].电源技术应用, 2006, 9(7):5.DOI:CNKI:SUN:DJYY.0.2006-07-023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值