用于大规模 MIMO 检测的近似消息传递 (AMP)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

大规模多输入多输出(Massive MIMO)技术作为第五代及未来移动通信系统的核心技术之一,其能够极大地提升频谱效率和能量效率,满足日益增长的无线数据流量需求。大规模 MIMO 系统中,基站端配备数百甚至数千根天线,同时为多个用户服务。然而,天线数量的急剧增加带来了信号处理的巨大挑战,尤其是接收端的多用户检测(Multi-User Detection, MUD)。传统的线性检测算法,如最小均方误差(MMSE)检测,在大规模 MIMO 系统中计算复杂度随着天线数量和用户数量的增加呈平方甚至更高的关系增长,难以满足实时性要求。非线性检测算法虽然性能更优,但复杂度通常更高。因此,开发高效且性能接近最优的大规模 MIMO 检测算法成为了当前研究的热点。

近似消息传递(Approximate Message Passing, AMP)算法作为一种基于贝叶斯原理的迭代推断算法,最初被应用于稀疏信号恢复领域。其低计算复杂度、优秀的恢复性能以及在大规模系统中的可扩展性,使得 AMP 算法在大规模 MIMO 检测领域展现出了巨大的潜力。本文旨在深入探讨基于 AMP 的大规模 MIMO 检测算法的原理、优势、挑战以及未来发展方向。

1. 大规模 MIMO 系统模型与检测问题

MIMO 检测的目标是根据接收信号 yy 和已知的信道矩阵 HH,恢复出用户发送的信号向量 xx。这是一个典型的多变量逆问题。最优的最大后验概率(MAP)检测需要遍历所有可能的发送信号组合,其计算复杂度随着用户数量和星座图大小呈指数级增长,在大规模 MIMO 系统中是不可行的。因此,需要寻找计算复杂度更低的次优检测算法。

2. 近似消息传递 (AMP) 算法原理

AMP 算法是一种基于贝叶斯推断的迭代算法,其核心思想是通过消息传递的方式在变量之间传递信息,从而逐步逼近后验概率。在大规模 MIMO 检测问题中,AMP 算法可以被视为一种高效的近似最优贝叶斯推断算法。其迭代过程可以抽象为两个主要的步骤:线性处理和非线性处理。

2.1 AMP 在大规模 MIMO 检测中的应用

将 AMP 算法应用于大规模 MIMO 检测,可以将信道矩阵 HH 视为 AMP 框架中的测量矩阵 AA,待检测的信号向量 xx 视为待恢复的信号向量。由于用户发送的信号 xx 来自于一个有限的星座图,这是一种典型的离散先验分布。因此,在 AMP 算法的非线性处理步骤中,需要使用适用于离散信号的去噪函数。

对于离散信号的去噪,通常采用最小均方误差(MMSE)估计器或最大后验概率(MAP)估计器。

3. 基于 AMP 的大规模 MIMO 检测算法的优势

与传统的线性检测算法(如 MMSE)和非线性检测算法(如球形译码)相比,基于 AMP 的大规模 MIMO 检测算法具有以下显著优势:

  • 可扩展性:

     AMP 算法的计算复杂度与天线数量和用户数量呈线性关系,这使得其非常适合处理大规模 MIMO 系统中的大规模数据。随着系统规模的增加,AMP 算法的计算负担增长相对缓慢。

  • 对信道模型的鲁棒性:

     虽然标准 AMP 算法的理论分析通常基于 i.i.d. 高斯信道模型,但大量的研究表明,AMP 及其变体在具有空间相关性等非 i.i.d. 信道模型下仍然能够取得不错的性能。

  • 易于实现:

     AMP 算法的迭代结构清晰,主要包括线性运算和逐元素非线性运算,相对容易在硬件或软件中实现。

4. 基于 AMP 的大规模 MIMO 检测算法的挑战与改进

尽管 AMP 算法在大规模 MIMO 检测中取得了巨大成功,但也存在一些挑战和需要改进的地方:

  • 收敛性问题:

     标准 AMP 算法的收敛性理论主要建立在 i.i.d. 高斯测量矩阵(或信道矩阵)以及特殊信号先验分布的假设下。在更一般的信道模型(如具有空间相关性)或更复杂的系统设置下,AMP 算法的收敛性可能无法得到保证,甚至可能出现振荡或发散。

  • Onsager 校正项的精确性:

     Onsager 校正项是 AMP 算法收敛性的关键。标准的 Onsager 校正项计算依赖于非线性函数的导数和矩阵的迹,在实际系统中可能难以精确计算。不准确的 Onsager 校正项可能导致性能下降甚至不收敛。

  • 对非高斯噪声和干扰的敏感性:

     标准 AMP 算法假设噪声为高斯白噪声。在存在非高斯噪声或强干扰的场景下,AMP 算法的性能可能会下降。

  • 信道估计误差的影响:

     AMP 算法的性能高度依赖于准确的信道状态信息。信道估计误差会直接影响 AMP 算法的检测性能。

为了克服上述挑战,研究人员提出了多种改进的 AMP 算法,包括:

  • 带有阻尼因子的 AMP (D-AMP):

     通过引入一个阻尼因子来控制迭代更新的步长,可以提高 AMP 算法的收敛性和鲁棒性,尤其是在非 i.i.d. 信道模型下。

  • 基于广义线性模型 (GLM) 的 AMP (GLM-AMP):

     将 AMP 算法推广到更一般的广义线性模型框架下,可以处理更广泛的噪声模型和非线性映射,从而增强算法的鲁棒性。

  • 消息传递网络的学习 (Learned AMP):

     利用深度学习的方法来学习 AMP 算法的迭代过程,可以自动优化非线性函数和 Onsager 校正项,从而提高算法的性能和鲁棒性。

  • 考虑空间相关性的 AMP:

     针对具有空间相关性的信道模型,可以对 AMP 算法进行修改,例如通过引入先验信息或使用更精细的消息传递策略。

  • 自适应 Onsager 校正项:

     研究如何在线或自适应地估计或计算 Onsager 校正项,以提高算法的鲁棒性和对不同信道条件的适应性。

5. 未来发展方向

基于 AMP 的大规模 MIMO 检测算法仍然是一个活跃的研究领域。未来的研究方向可能包括:

  • 深度学习与 AMP 的融合:

     进一步探索如何将深度学习技术与 AMP 算法相结合,例如利用深度神经网络学习更优的非线性函数、Onsager 校正项或迭代规则,从而提升算法的性能和鲁棒性。

  • 处理更复杂的系统场景:

     将 AMP 算法应用于更复杂的 MIMO 系统场景,如混合模拟/数字波束成形、带有硬件损伤的系统、联合信道估计与检测等。

  • 分布式 AMP 算法:

     考虑在分布式或协作大规模 MIMO 系统中应用 AMP 算法,解决由于基站协同或边缘计算带来的分布式检测问题。

  • 理论分析的深化:

     进一步深化对 AMP 算法在大规模 MIMO 系统中的收敛性、性能界限以及对信道模型、噪声统计等因素鲁棒性的理论分析。

  • 低功耗硬件实现:

     研究如何设计高效的硬件架构,以低功耗实现基于 AMP 的大规模 MIMO 检测算法,满足未来无线通信设备对能效的需求。

结论

近似消息传递 (AMP) 算法为大规模 MIMO 检测提供了一种高效且性能优异的解决方案。其低计算复杂度、良好的可扩展性以及接近最优的检测性能使其成为大规模 MIMO 系统中极具潜力的检测技术。尽管标准 AMP 算法存在一些挑战,但通过引入改进技术和与其他先进技术的融合,基于 AMP 的大规模 MIMO 检测算法正在不断完善,并有望在未来无线通信系统中发挥关键作用。随着对 AMP 算法的深入理解和技术的不断发展,相信其在大规模 MIMO 检测领域将会有更广泛的应用前景。

⛳️ 运行结果

🔗 参考文献

[1] 张云娇.大规模MIMO检测技术研究与仿真[D].电子科技大学[2025-04-22].DOI:CNKI:CDMD:2.1015.714408.

[2] 李豪,崔新凯,高向川.大规模MIMO室外无线光通信系统中基于分段高斯近似的最大似然盲检测算法[J].计算机科学, 2020, 47(3):6.DOI:10.11896/jsjkx.190200310.

[3] 李方伟,孙晓健,张海波,等.大规模MIMO网络中基于时间反演的预编码技术[J].重庆邮电大学学报(自然科学版), 2017(05).

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值