✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
衍射图案和全息图是获取物质结构和光学波前信息的重要手段。然而,在实际测量过程中,由于探测器尺寸、光学器件限制、样品遮挡或环境干扰等多种因素的影响,获得的衍射图案或全息图往往是不完整的,存在着缺失的像素或区域。这些缺失的信息严重影响了后续的数据分析、图像重建以及对样品性质的准确理解。因此,发展有效的技术来重建这些不完整的衍射图案和全息图,恢复缺失的信息,具有重要的理论意义和实际应用价值。
本文将重点探讨如何通过迭代相位检索(Iterative Phase Retrieval, IPR)技术来重建不完整的衍射图案和全息图中的缺失信息。我们将首先回顾衍射图案和全息图的基本原理及其在信息获取中的作用,分析不完整性对信息获取的挑战。随后,我们将详细阐述迭代相位检索的基本原理,以及如何将其应用于处理具有缺失数据的衍射图案和全息图。我们将探讨不同的迭代算法策略,以及在处理缺失信息时需要考虑的关键问题。最后,我们将总结迭代相位检索在这一领域的应用现状、挑战以及未来的发展方向。
一、衍射图案与全息图:信息获取的载体
衍射是波遇到障碍物或穿过孔隙时发生的偏离直线传播的现象。衍射图案是衍射波在空间中形成的强度分布,其包含了入射波和散射物体相互作用的信息。通过分析衍射图案,我们可以反演出散射物体的结构、形状、尺寸以及排列方式等信息。例如,在X射线衍射、电子衍射和光学衍射等领域,衍射图案是确定晶体结构、纳米粒子形貌和微观结构的重要依据。
全息术(Holography)是一种记录和再现波前信息的技术。它通过记录物体散射波与参考波干涉形成的干涉条纹(即全息图),来同时记录波的振幅和相位信息。与仅记录强度的衍射图案不同,全息图包含了完整的波前信息,因此可以实现三维图像的重建。全息术在显微成像、信息存储、三维显示等领域有着广泛的应用。
衍射图案和全息图作为信息载体,为我们提供了深入了解微观世界和光学现象的窗口。然而,其信息的完整性对于后续的分析至关重要。
二、不完整性带来的挑战与信息缺失的来源
尽管衍射图案和全息图承载着丰富的信息,但在实际获取过程中,由于各种限制,数据往往是不完整的。常见的信息缺失来源包括:
- 探测器尺寸限制:
探测器的面积通常是有限的,只能捕捉到衍射图案或全息图在一定范围内的强度分布。超过探测器边界的信息将被截断,导致数据缺失。
- 光学系统限制:
光学器件(如透镜、狭缝等)可能会引入像差、遮挡或限制成像范围,导致部分信息无法有效记录。
- 样品特性:
样品本身可能存在不透明区域、阴影或复杂的形貌,导致入射波或散射波无法有效探测到,从而产生数据缺失。
- 环境因素:
噪声、振动或光照不稳定等环境因素可能导致部分像素的数据失真或丢失。
- 数据采集故障:
在数据采集过程中,探测器本身或数据传输过程可能出现故障,导致部分数据丢失。
这些不完整性导致获得的衍射图案或全息图存在着“空洞”或“死区”,使得后续的图像重建或参数提取变得困难且不准确。特别是在没有额外先验信息的情况下,从不完整的强度数据中恢复完整的波前信息是一个具有挑战性的问题。
三、迭代相位检索:从强度到相位
衍射图案记录的是衍射波的强度信息,而全息图记录的是干涉条纹的强度信息。从这些强度信息中恢复完整的波前信息(包括相位信息)通常是一个非线性逆问题,因为强度是复数波前与自身共轭的乘积,相位信息在强度计算中丢失了。迭代相位检索(IPR)是一种解决这类问题的强大技术,它通过在实空间和傅里叶空间(或衍射空间)之间进行迭代变换,并结合已知的约束条件,逐步恢复丢失的相位信息。
IPR的基本思想可以概括为以下步骤:
- 初始化:
从已知的强度数据和一个初始的相位估计(通常是随机相位或均匀相位)开始构建一个初始波前。
- 傅里叶变换:
将当前波前从实空间变换到傅里叶空间,得到其对应的衍射模式。
- 应用傅里叶空间约束:
在傅里叶空间应用已知约束,例如将衍射模式的振幅替换为测量的衍射图案的振幅(平方根)。
- 逆傅里叶变换:
将经过约束的衍射模式逆傅里叶变换回实空间,得到一个新的实空间波前。
- 应用实空间约束:
在实空间应用已知约束,例如对波前的振幅或支持区域进行约束。对于处理不完整数据,这一步尤为关键,我们将详细讨论。
- 迭代:
重复步骤2-5,直到算法收敛或满足一定的停止准则。
常用的迭代相位检索算法包括 Gerchberg-Saxton (GS) 算法及其变种 Error Reduction (ER) 算法、Hybrid Input-Output (HIO) 算法等。这些算法在迭代过程中应用不同的更新策略来提高收敛性和鲁棒性。
四、迭代相位检索在不完整数据重建中的应用
将迭代相位检索应用于重建不完整的衍射图案和全息图中的缺失信息,核心在于如何有效地处理和利用这些缺失的数据。这主要体现在实空间约束的应用上。当数据存在缺失时,我们无法在所有像素位置上施加傅里叶空间振幅约束,也无法在所有实空间位置上施加统一的实空间约束。
以下是处理不完整数据的关键策略:
-
傅里叶空间约束的局部应用: 对于已测量的衍射图案或全息图区域,我们可以像常规IPR一样,将计算出的衍射模式的振幅替换为测量的振幅。然而,在缺失的区域,我们没有测量数据,因此不能直接应用振幅约束。一种常见的做法是在缺失区域不进行振幅替换,或者使用一些插值方法来估计缺失区域的振幅,但这通常会引入误差。更稳健的方法是直接忽略缺失区域的傅里叶空间约束,让算法在实空间约束的引导下逐步恢复这些信息。
-
实空间约束的灵活应用: 实空间约束是恢复缺失信息的关键。对于已知的样品区域(如支持区域),我们可以施加幅度非负、幅度有界或支持区域外的幅度为零等约束。对于全息图,如果知道物体是纯振幅物体或纯相位物体,也可以施加相应的约束。
-
缺失区域的处理: 在实空间,对于那些对应于衍射图案或全息图中缺失数据的区域,我们没有关于波前振幅和相位的直接信息。然而,我们可以利用其他先验信息来约束这些区域。例如,如果知道样品是有限大小的,那么在样品区域之外的波前应该为零。如果知道样品是连续的,那么缺失区域的波前应该与周围区域保持一定的平滑性。
-
交替迭代与误差函数: 为了提高收敛性和处理复杂的不完整数据,可以采用交替迭代的策略,例如在某些迭代步中只应用傅里叶空间约束,在其他步中只应用实空间约束。同时,定义一个合适的误差函数来衡量重建结果与已知数据的吻合程度,并以此作为算法收敛的判据。对于不完整数据,误差函数应该只计算在有测量数据的区域。
-
引入额外的先验信息: 除了上述基本的约束外,引入额外的先验信息可以显著提高重建的质量。例如,如果知道样品的形状大概轮廓,可以将其作为支持区域的约束。如果知道样品是由几种已知材料组成的,可以限制重建结果的数值范围。在全息术中,如果知道参考波的参数,也可以作为额外的约束。
不同迭代算法在不完整数据处理中的表现:
- Error Reduction (ER) 算法:
ER算法是一种简单的投影算法,对于简单的缺失模式可能有效,但对于复杂的缺失区域或噪声较大的数据,其收敛性可能较差,容易陷入局部最优解。
- Hybrid Input-Output (HIO) 算法:
HIO算法通过引入一个反馈机制,在实空间对不满足约束的区域进行“惩罚”,使得算法能够跳出局部最优。HIO算法在处理具有缺失数据的衍射图案和全息图时通常表现更好,能够更有效地恢复缺失信息。
- 其他高级算法:
还有许多其他高级的迭代相位检索算法,如差分演化算法(Differential Evolution Algorithm)、Wirtinger Flow算法等,这些算法在处理复杂约束和噪声方面可能具有更好的性能,但通常计算复杂度更高。
处理缺失像素的恢复:
对于衍射图案和全息图中存在的缺失像素,可以将其视为傅里叶空间或全息图空间中的“死区”。在迭代过程中,对于这些缺失像素对应的傅里叶系数或全息图强度,我们没有测量值。在傅里叶空间约束步,我们只对已测量的像素应用振幅替换。对于缺失像素,我们可以保留前一次迭代计算出的傅里叶系数值,或者采用其他策略,如将这些像素的振幅设为零,但这通常会导致重建结果出现伪影。
更有效的方法是利用实空间约束来“填充”这些缺失像素的信息。例如,如果已知实空间样品的支持区域,那么在实空间迭代步中,对于那些在支持区域内但在傅里叶空间对应于缺失像素的区域,算法会尝试根据周围已知的信息和支持区域的约束来重建其振幅和相位。通过在实空间和傅里叶空间之间的多次迭代,缺失像素的信息会逐渐被恢复。
五、应用实例与挑战
迭代相位检索在重建不完整的衍射图案和全息图方面有着广泛的应用,例如:
- 纳米粒子成像:
在X射线自由电子激光(XFEL)等脉冲光源实验中,由于样品损伤等因素,往往只能获得不完整的衍射图案。IPR技术可以用来从这些不完整的图案中重建纳米粒子的三维结构。
- 计算成像:
在一些计算成像技术中,由于探测器限制或特殊的光学设计,获得的数据可能是不完整的。IPR可以用来从这些不完整的测量中恢复完整的图像。
- 全息显微:
在数字全息显微中,如果探测器尺寸小于物体衍射的范围,会导致全息图被截断。IPR可以用来从截断的全息图中重建物体的完整波前。
- X射线断层扫描:
在某些X射线断层扫描技术中,由于投影角度不全或数据采集故障,数据可能存在缺失。IPR结合其他重建算法可以用来处理这些不完整数据。
尽管迭代相位检索在处理不完整数据方面取得了显著进展,但也面临一些挑战:
- 收敛性问题:
对于复杂的缺失模式和噪声数据,算法可能难以收敛到全局最优解,容易陷入局部最优。
- 计算成本:
迭代过程可能需要大量的计算资源和时间,特别是对于高分辨率的数据。
- 先验信息的依赖性:
重建的质量很大程度上依赖于所施加的实空间约束和先验信息的准确性。不准确的先验信息可能导致错误的重建结果。
- 对噪声的敏感性:
缺失数据通常伴随着噪声,噪声会影响算法的收敛性和重建的准确性。
- 唯一性问题:
从强度数据中恢复相位是一个非唯一性问题。虽然约束条件可以减少非唯一性,但在某些情况下仍然可能存在多个满足约束的解。
六、未来发展方向
为了克服上述挑战并进一步提高迭代相位检索在不完整数据重建中的性能,未来的研究可以从以下几个方面展开:
- 改进迭代算法:
开发更鲁棒、收敛性更好的迭代算法,能够有效地处理复杂的缺失模式和高水平的噪声。例如,结合机器学习技术来辅助迭代过程,预测缺失信息或优化算法参数。
- 发展更精确的约束模型:
探索更有效的实空间约束模型,能够更准确地反映样品的物理特性或光学系统的限制。例如,利用深度学习模型从已知数据中学习更复杂的约束。
- 多模态数据融合:
结合来自其他测量模式的数据(例如扫描电子显微镜图像、原子力显微镜图像等)作为额外的先验信息,提高重建的准确性。
- 并行计算和硬件加速:
利用并行计算技术(如GPU加速)来提高迭代算法的计算效率,缩短重建时间。
- 理论研究:
深入研究迭代相位检索在处理不完整数据时的理论性质,分析解的唯一性、收敛性条件以及对噪声的敏感性。
结论
通过迭代相位检索技术重建衍射图案和全息图中的缺失信息是解决实际测量中数据不完整性问题的重要手段。通过在实空间和傅里叶空间之间迭代应用约束,可以有效地从不完整的强度数据中恢复丢失的相位信息,进而实现对样品结构或光学波前的准确重建。尽管面临着收敛性、计算成本和对先验信息依赖等挑战,但随着算法的不断改进和新技术的引入,迭代相位检索在这一领域的应用前景广阔,将为材料科学、物理学、生物医学和工程学等领域的研究提供更精确和完整的信息。未来的研究将继续致力于提高算法的鲁棒性和效率,并探索结合其他技术来进一步提升重建质量,为从不完整数据中提取有价值信息提供强大的工具。
⛳️ 运行结果
🔗 参考文献
[1] 迟卫宁.基于多角度照明的数字全息衍射层析成像研究[D].北京工业大学[2025-04-25].
[2] 吴广志,张晗盛,茆文艺.基于并行结构的相位恢复算法在全息激光投影中的应用[J].液晶与显示, 2014, 000(006):1010-1015.DOI:10.3788/YJYXS20142906.1010.
[3] 隋连升,程茵,王战敏.利用迭代相位检索算法实现高质量重建的单像素相关成像.CN201910543339.9[2025-04-25].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇