💥💥💥💥💞💞💞💞💞💞欢迎来到麒麟科研社博客之家💞💞💞💞💞💞💥💥💥💥
✅博主简介:985研究生,热爱科研的Matlab仿真开发者,完整代码 论文复现 程序定制 期刊写作 科研合作 扫描文章底部QQ二维码。
🍎个人主页:麒麟科研社
🏆代码获取方式:扫描文章底部QQ二维码
⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(麒麟科研社版)
⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!
⛄一、多无人机动态任务分配简介
蒙特卡洛算法可以用于无人机任务分配的优化。在无人机任务分配中,我们需要将多个任务分配给多台无人机,以实现最优的任务执行效果。
蒙特卡洛算法是一种随机模拟方法,通过重复随机抽样来估计问题的解。在无人机任务分配中,可以使用蒙特卡洛算法来模拟不同的任务分配方案,并评估每种方案的效果。
具体来说,可以按照以下步骤应用蒙特卡洛算法进行无人机任务分配:
1、定义问题:明确任务和无人机的约束条件,例如任务数量、无人机数量、任务属性等。
2、随机生成初始解:随机分配任务给无人机,得到一个初始的分配方案。
3、评估方案:根据预先设定的评估指标,对每个无人机的任务执行情况进行评估,例如任务完成时间、能源消耗等。
4、生成新解:利用某种策略,例如随机交换两个任务的分配或者随机重新分配所有任务,生成新的分配方案。
5、评估新解:对新生成的分配方案进行评估。
6、更新当前解:根据一定的概率规则,确定是否接受新解作为当前解。如果新解优于当前解,直接接受;如果新解劣于当前解,以一定概率接受。
7、重复步骤4-6,直到达到停止准则(例如迭代次数达到上限或者运行时间超过限制)。
8、输出最优解:根据蒙特卡洛模拟的结果,输出最优的任务分配方案。
需要注意的是,蒙特卡洛算法是一种启发式方法,不能保证找到全局最优解。因此,在实际应用中,可以进行多次独立的蒙特卡洛模拟,并从中选取最优的任务分配方案。此外,还可以结合其他优化方法进行进一步改进,以提高任务分配的效果。
⛄二、部分源代码
clc
close all
clear all
disp(‘无人机优化模型’)
%参数准备
%区域用户位置
d1=100; %区域A长度
d2=80; %区域A长度
N=30;%用户个数
C=6;%天线个数
bc=1;%电池损耗/每个内容—假设容量相等 电池消耗相同
Bm=[10 10 10];%无人机容量
%索引位置tuple={content k,UAV m,location q}
height=10;
h_max=20;
delta_d=0.5;%location interval
n1=3;%无人机个数
%discrete the location
%用户位置
%discrete the location
d1a=0:delta_d:d1;
d2a=0:delta_d:d2;
%离散位置
index=[];
for i=1:1:length(d1a)
for j=1:1:length(d2a)
index=[index;[d1a(i),d2a(j)]];
end
end
num_index=size(index,1);%number of location
%新增人群位置计算
%新增人群不可能出现位置
d1a1=[5,d1-5];
d2a1=[5,d2-5];
[len,~]=find((index(:,1)>=d1a1(1) & index(:,1)<=d1a1(2)) & (index(:,2)>=d2a1(1) & index(:,2)<=d2a1(2)));
id_new=setdiff(1:1:size(index,1),len’); %新增用户编号
new_candi=index(id_new’😅;%新增人群位置
%随机生成用户
user_index=randperm(num_index,N);
user_location=[];
for i=1:1:length(user_index)
user_location=[user_location;index(user_index(i)😅];%%N2
end
%仿真时间T
T=5;%仿真时间T
v=1;%用户行走速度
delta_p=2;%单位时间变化人数
theta_max=2pi;%用户随机行走方向
best_uav=cell(1,T);
best_task=zeros(1,T);
[x_ind,task]=one_step(user_location,height,h_max,C,N,n1,bc,Bm); %主程序
best_uav{1,1}=x_ind;
best_task(1,1)=task;
old_ind=x_ind;%设置就得无人机位置
for t=2:1:T
%更新用户
new_user_location=[];
%考虑原始用户行走
for i=1:1:size(user_location,1)
user_location(i,1)=user_location(i,1)+vcos(random(‘unif’,0,theta_max));
user_location(i,2)=user_location(i,2)+vsin(random(‘unif’,0,theta_max));
%边界更新,如果超出边界 则认为用户离开
if (user_location(i,1)>d1) | (user_location(i,1)<0) | (user_location(i,2)<0)|(user_location(i,2)>d2)
continue;%用户离开不管
else
new_user_location=[new_user_location;user_location(i,:)]; %用户没离开保留
end
end
%当前时刻新来客户
num_new=random(‘poiss’,delta_p);
if num_new==0
new_user_location=new_user_location;
else
new_id=randperm(length(id_new),num_new);
new_coming=new_candi(new_id’😅;
new_user_location=[new_user_location; new_coming];
end
%用户个数更新
N=size(new_user_location,1);
%计算当前无人机位置
[x_ind,task]=one_step(new_user_location,height,h_max,C,N,n1,bc,Bm); %主程序
%无人机位置分配–中心服务器向无人机分配无人机更新位置
x_ind=allot_uav(x_ind,old_ind);
best_uav{1,t}=x_ind;
best_task(1,t)=task;
%我下一时刻用户位置更新
user_location=new_user_location;%上一时刻用户位置
old_ind=x_ind;
if mod(t,20)==0
figure,
plot(user_location(:,1),user_location(:,2),‘r*’)
xlabel(‘x’)
ylabel(‘y’)
title(num2str(t))
end
end
figure,plot(1:1:T,best_task,‘->’)
xlabel(‘T/(min)’)
ylabel(‘Task/(n)’)
grid on
ylim([0 40])
Q1=[];Q2=[];Q3=[];
for i=1:1:T
Q1=[Q1,(best_uav{1,i}(1,:))‘];
Q2=[Q2,(best_uav{1,i}(2,:))’];
Q3=[Q3,(best_uav{1,i}(3,:))'];
end
figure,
plot3(Q1(1,:),Q1(2,:),Q1(3,:),‘r->’)
hold on
plot3(Q2(1,:),Q2(2,:),Q2(3,:),‘b->’)
hold on
plot3(Q3(1,:),Q3(2,:),Q3(3,:),‘c->’)
xlabel(‘x’)
ylabel(‘y’)
zlabel(‘height’)
grid on
legend(‘UAV-1’,‘UAV-2’,‘UAV-3’)
title(‘the location of UAV’)
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]柳寅,马良.分布式卫星系统递归式任务分配机制研究[J].计算机应用研究. 2013,30(09)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合