💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
基于主成分分析(Principal Component Analysis,PCA)的人脸识别系统是一种常见的人脸识别技术,通过降维和特征提取的方式来识别图像中的人脸。成分分析是一种常用的降维技术,旨在通过线性变换将高维数据转换为低维数据,同时保留尽可能多的原始数据信息。在人脸识别中,PCA可用于提取人脸图像中最显著的特征。 首先收集大量的人脸图像作为训练样本,每张图像都要包括人脸和相应的标签。 对图像进行预处理,如灰度化、归一化、人脸对齐等,以确保数据的质量和一致性。使用PCA技术对预处理后的人脸图像进行特征提取,将高维的人脸图像数据转换为低维的特征向量。对于新的人脸图像,将其转换为特征向量并使用训练好的模型进行分类,确定其属于哪个已知的人脸类别。 PCA简单有效,计算速度快,对于高维数据的降维和特征提取效果较好,通常能够取得较高的识别准确率。基于PCA的人脸识别系统通过降维和特征提取的方式,实现了对人脸图像的有效表示和识别,具有简单高效、计算速度快等优点,在实际应用中得到了广泛的应用。
📚2 运行结果
主函数部分代码:
clear all
clc
close all
% You can customize and fix initial directory paths
TrainDatabasePath = uigetdir('D:\Program Files\MATLAB\R2006a\work', 'Select training database path' );
TestDatabasePath = uigetdir('D:\Program Files\MATLAB\R2006a\work', 'Select test database path');
prompt = {'Enter test image name (a number between 1 to 10):'};
dlg_title = 'Input of PCA-Based Face Recognition System';
num_lines= 1;
def = {'1'};
TestImage = inputdlg(prompt,dlg_title,num_lines,def);
TestImage = strcat(TestDatabasePath,'\',char(TestImage),'.jpg');
im = imread(TestImage);
T = CreateDatabase(TrainDatabasePath);
[m, A, Eigenfaces] = EigenfaceCore(T);
OutputName = Recognition(TestImage, m, A, Eigenfaces);
SelectedImage = strcat(TrainDatabasePath,'\',OutputName);
SelectedImage = imread(SelectedImage);
imshow(im)
title('Test Image');
figure,imshow(SelectedImage);
title('Equivalent Image');
str = strcat('Matched image is : ',OutputName);
disp(str)
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]李丰森,王健,刘玉荣,等.人脸识别技术在医院诊疗活动中的应用[J].西部中医药,2024,37(05):72-75.
[2]赵世林,徐成俊,刘昌荣.基于CNN特征的协同稀疏表示人脸识别算法(英文)[J/OL].Journal of Measurement Science and Instrumentation:1-11[2024-05-22].http://kns.cnki.net/kcms/detail/14.1357.th.20240511.1520.002.html.