💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
短时傅里叶变换(STFT)是一种在信号处理领域广泛应用的技术,用于分析信号在时频域上的特性。相比于对整个信号进行傅里叶变换,STFT将信号分成短时段,然后对每个时段进行傅里叶变换,以获取信号在不同时间和频率上的频谱信息。MATLAB作为一种强大的数学工具和编程环境,提供了丰富的函数库,方便了短时傅里叶变换的实现。通过使用MATLAB,工程师和研究人员能够轻松地对复杂信号进行时频分析,并可视化这些分析结果。
📚2 运行结果
主函数部分代码:
clear, clc, close all
% load an audio file
[x, fs] = audioread('track.wav'); % load an audio file
x = x(:, 1); % get the first channel
% define analysis parameters
wlen = 1024; % window length (recomended to be power of 2)
hop = wlen/4; % hop size (recomended to be power of 2)
nfft = 4096; % number of fft points (recomended to be power of 2)
% perform STFT
win = blackman(wlen, 'periodic');
[S, f, t] = stft(x, win, hop, nfft, fs);
% calculate the coherent amplification of the window
C = sum(win)/wlen;
% take the amplitude of fft(x) and scale it, so not to be a
% function of the length of the window and its coherent amplification
S = abs(S)/wlen/C;
% correction of the DC & Nyquist component
if rem(nfft, 2) % odd nfft excludes Nyquist point
S(2:end, :) = S(2:end, :).*2;
else % even nfft includes Nyquist point
S(2:end-1, :) = S(2:end-1, :).*2;
end
% convert amplitude spectrum to dB (min = -120 dB)
S = 20*log10(S + 1e-6);
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]Kaur D ,Kumar N ,Anand G , et al. Enhancement of energy storage in nanocomposite thin films: Investigating PVDF-ZnO and PVDF-TZO for improved dielectric and ferroelectric characteristics[J]. Physica Scripta,2024,99(3).
[1]徐高孟,戴涛涛,吕成良等.双螺杆挤压联合低温冲击磨技术改良大米抛光粉品质[J/OL].食品工业科技:1-17[2024-03-02].https://doi.org/10.13386/j.issn1002-0306.2023120058.