💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥
✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。
🍎个人主页:Matlab仿真科研站博客之家
🏆代码获取方式:
💥扫描文章底部QQ二维码💥
⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
⛄更多Matlab图像处理(仿真科研站版)仿真内容点击👇
Matlab图像处理(仿真科研站版)
⛄一、小波变换图像分析简介
0 引言
21世纪是信息化时代,图像成为了人类获取信息的重要载体,在人类日常生活中扮演着越来越重要的角色,地位越来越高,例如,在线浏览、下载图像和视频、医院根据MRI(核磁共振图像)诊断疾病。但在图像产生以及传输等过程中,会遭到设施、环境等要素的干扰,导致图像信息的破坏或丢失[1,2]。阻碍人的视觉或系统传感器对所接收信源信息进行理解的各种因素就叫做噪声。在图像采集和传输过程中,往往会遭到各种噪声的污染。噪声的产生会很大程度上降低原始图像的分辨率,使原始图像变得模糊难以用与日常的生活或者研究,严重影响后续的一系列高级数字图像处理。
因此,如何将图像在采集以及传输过程后的噪声进行消除就变得非常重要。然而,传统的图像去噪方法在降低噪声和保留图像细节方面的确难以令人满意。小波变换在高频段可以用低频分辨率分析信号,并在不同的空间上进行分析。基于小波理论的数字信号处理已经取得了蓬勃的发展,提供了一种全新的强劲信号处理手段。理所当然的将小波变换用于图像降噪中。
1 研究意义以及发展过程
基于小波变换的图像去噪主要是由小波域中的小波阈值处理完成。小波域图像去噪处理可被认为是对输入图像的最佳估计使用阈值的噪声数据。其结构图如图1所示。
图1 小波去噪结构框图
小波理论在图像去噪中应用的发展过程大致上可以分成三个阶段:第一阶段,Mallat提出了非常著名的基于小波系数模极大值的去噪方法。第二阶段,在以斯坦福大学的Donoho和Johnstone提出的一系列基于理论研究的小波阈值去噪方法。第三阶段,在各种模型的发展下,该阶段的主要特点是根据图像小波系数,通过图像小波系数的多尺度统计建模,对层内和层间存在的相关性进行去噪。
图2.a灰度图
图2.b一次离散小波变换图
图2.c一次逆离散小波变换图
图像是一个二维函数f(x,y),其中x和y是平面坐标,振幅在任何一对坐标(x,y)称为灰度级或强度那个时候的图。有两种类型的图像,即灰色缩放图像和RGB图像。图像在获取和传输中常常会被噪声破坏。有各种降噪技术被使用用于消除噪音。大多数使用的标准算法去噪图像并执行个体过滤过程。去噪通常会降低噪音水平但由于图像模糊或过度平滑边缘或线条等损失。近年来出现了大量关于小波阈值的研究和图像去噪的阈值部分,因为小波为分离噪声信号提供了适当的基础图像信号。小波变换擅长能量压实,小系数更有可能是由于重要的信号特征而产生的噪声和大系数。这些小系数可以在没有阈值的情况下进行阈值处理影响图像的重要特征。
2 技术实验以及分析
小波变换(WT)是信号分析的有力工具在处理多分辨率的场景下不像傅里叶变换,小波变换适用于应用具有瞬态的非平稳信号现象,其中频率响应随时间变化。小波系数表示相似度的度量信号和所选小波之间的频率成分功能。这些系数计算为信号和缩放小波函数的卷积,这可以解释为扩张的带通滤波器,因为其带通样频谱。通过小波分析从一个高尺度的信号,提取的全局信息称为近似值,并在两个尺度上,提取精细信息称为详细信息。
图5.c小波阈值去噪图像
离散小波变换(DWT)需要更少的空间利用节省空间的编码小波是正交或双正交基,并且因此不会产生多余的分析。离散的小波变换对应其连续版本通常在二元网格上采样。阈值化一次对一个小波系数进行运算,是一种简单的非线性技术。在其最基本形式,每个系数将与阈值进行比较。如果系数小于阈值然后将它设置为零,否则将保留或修改。
连续小波在处理对象时会造成理论对象的系数冗余,在实际应用中我们所需要在除去干扰信号的同时保有原始信号的低冗余性,因为离散的小波变换与连续的小波变换运算相比更加的便捷,且在实际的信号处理上计算机储存的都是离散信息。因此需要对尺寸参数和平移量参数离散处理,将原有的连续平移伸缩分量变换[7]。
如2图所示将lena图进行离散化,图2.a为灰度图像、图2.b一次离散小波变换图像、图2.c一次逆离散小波变换图像。
图3.a为灰度图像、图3.b为两次离散小波变换图像、图3.c为二次逆离散小波变换图像。
利用小波变换对图像进行去噪就是将有噪声的小波系数进行分解,然后从纯图像中计算出无限接近的小波系数值,噪声图像经过小波系数分解处理。小波系数由两部分组成分别是纯小波系数和噪声小波系数。两部分系数的和就是含噪图像分解的小波系数,而使用阈值对带噪图像的处理,就是阈值后的小波系数也叫作阈值函数。这样可以在最大限度上处理噪声,得到更加纯净的利用小波系数重构的图像。算法流程图如图4所示。
图4 小波阈值去噪基本流程图
算法实现后的图像如图所示,图5.a为灰度图像,图5.b为加入高斯噪声的图像,图5.c为小波软阈值去噪之后的图像。将灰度图像原图、加入高斯噪声的图像与降噪后的图像进行对比,降噪效果显而易见。
阈值函数在小波变换中对于图像降噪起到的作用就是系数选择,通过阈值对于高频小波系数进行处理,在阈值化中加入阈值函数表达式。在基于小波阈值去噪方法中,其中阈值的确定决定了去噪后的图像质量的好坏,对去除噪声的效果有着很大的影响。本实验选取的是软阈值函数,其数学表达式如下。
其中:y为含噪声信号的小波变化系数;T为去噪阈值;Tsoft为软阈值滤波的收缩函数;sgn(y)为符号函数。
软阈值滤波将幅值大于阈值的小波系数收缩且保留下来,软阈值的收缩函数的优点就是连续性好。
小波去噪还包括模极大值重构滤波方法。优点是它不像小波阈值去噪那样提前估计噪声的方差,但是它要使用到模极大值重构小波系数,这就导致大大增加的计算量,而且该方法降噪效果并不好,所以使用受到限制。
还有空域滤波方法,该方法利用小波系数尺度之间的相关性进行去噪,虽然原理简单,但是运算过程中需要进行多次迭代,这就也使得计算量大大增加,在图像去噪方面也不能广泛使用。
⛄二、部分源代码
function varargout = wavelet(varargin)
% WAVELET MATLAB code for wavelet.fig
% WAVELET, by itself, creates a new WAVELET or raises the existing
% singleton*.
%
% H = WAVELET returns the handle to a new WAVELET or the handle to
% the existing singleton*.
%
% WAVELET(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in WAVELET.M with the given input arguments.
%
% WAVELET(‘Property’,‘Value’,…) creates a new WAVELET or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before wavelet_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to wavelet_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help wavelet
% Last Modified by GUIDE v2.5 10-Jan-2021 05:42:48
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @wavelet_OpeningFcn, …
‘gui_OutputFcn’, @wavelet_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% — Executes just before wavelet is made visible.
function wavelet_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to wavelet (see VARARGIN)
% Choose default command line output for wavelet
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes wavelet wait for user response (see UIRESUME)
% uiwait(handles.figure_wavelet);
setappdata(handles.figure_wavelet,‘img_src’,0) %初始化变量到窗口框架
setappdata(handles.figure_wavelet,‘WAVELET_NAME’,0);
setappdata(handles.figure_wavelet,‘Filter_style’,0);
setappdata(handles.figure_wavelet,‘Image_R’,0);
% — Outputs from this function are returned to the command line.
function varargout = wavelet_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
%%
% 一、导入图片
%%
% — Executes on button press in Import_image.
function Import_image_Callback(hObject, eventdata, handles)
% hObject handle to Import_image (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[filename, pathname] = uigetfile( …
{‘.bmp;,jpg;.png;.jpeg;.tif’,'Image File(.bmp,.jpg,.png,jpeg,.tif)’;…
‘.’, ‘All File(.)’},…
‘Pick an image’);
axes(handles.axes_original); %用axes命令设定当前操作的坐标轴是axes_src
fpath = [pathname filename]; %将文件名和目录名组合成一个完整的路径
img_src = imread(fpath); %读取图片
imshow(img_src); %用imread读入图片,并用imshow在axes_src上显示
setappdata(handles.figure_wavelet,'img_src',img_src);
% — Executes on button press in analyze_image.
function analyze_image_Callback(hObject, eventdata, handles)
% hObject handle to analyze_image (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%Main
img_src = getappdata(handles.figure_wavelet,‘img_src’);
%[ X,map] = rgb2ind( img_src, 256);%把RGB图转化为索引图像,得到颜色矩阵map
%save ‘00’ X map; load 00;
%colormap( map);
HANDDLE_IMAGE = img_src;
%image(HANDDLE_IMAGE);
%%
% 二、选择小波的基波,计算出相关的滤波函数
%%
WAVELET_NAME = getappdata(handles.figure_wavelet,‘WAVELET_NAME’);
%WAVELET_NAME = ‘sym8’;
[Lo_D,Hi_D,Lo_R,Hi_R]=wfilters(WAVELET_NAME);
RowLo_DTemp = RanksSampling(RanksConv(HANDDLE_IMAGE,Lo_D,‘r’),‘c’,2);
%%
% 三、分解
%%
CA = RanksSampling(RanksConv(RowLo_DTemp,Lo_D,‘c’),‘r’,2);
RowLo_DTemp = RanksSampling(RanksConv(HANDDLE_IMAGE,Lo_D,‘r’),‘c’,2);
CA = RanksSampling(RanksConv(RowLo_DTemp,Lo_D,‘c’),‘r’,2);
CH = RanksSampling(RanksConv(RowLo_DTemp,Hi_D,‘c’),‘r’,2);
RowHi_DTemp = RanksSampling(RanksConv(HANDDLE_IMAGE,Hi_D,‘r’),‘c’,2);
CV = RanksSampling(RanksConv(RowHi_DTemp,Lo_D,‘c’),‘r’,2);
CD = RanksSampling(RanksConv(RowHi_DTemp,Hi_D,‘c’),‘r’,2);
%[CA,CH,CV,CD] = dwt2(HANDDLE_IMAGE,WAVELET_NAME);
axes(handles.axes_CA);
image(CA);
axes(handles.axes_CH);
image(CH);
axes(handles.axes_CV);
image(CV);
axes(handles.axes_CD);
image(CD);
%%
% 四、去噪
%%
Filter_style = getappdata(handles.figure_wavelet,‘Filter_style’);
newCA =CA;
if(2 == Filter_style)
[THR,SORH,KEEPAPP]=ddencmp('den','wv',CH);%获取去噪过程中的默认阈值(软或硬)
newCH=wdencmp('gbl',CH,WAVELET_NAME,2,THR,SORH,KEEPAPP);
[THR,SORH,KEEPAPP]=ddencmp('den','wv',CV);%获取去噪过程中的默认阈值(软或硬)
newCV=wdencmp('gbl',CV,WAVELET_NAME,2,THR,SORH,KEEPAPP);%用全局阈值对图像去噪
[THR,SORH,KEEPAPP]=ddencmp('den','wv',CD);%获取去噪过程中的默认阈值(软或硬)
newCD=wdencmp('gbl',CD,WAVELET_NAME,2,THR,SORH,KEEPAPP);%用全局阈值对图像去噪
end
if(3 == Filter_style)
%下面用独立阈值选项进行图像的消噪
thr_h=[96.245,97.411];%水平方向阈值
thr_v=[99.321,94.122];%垂直方向阈值
thr_d=[95.762,92.330];%对角方向阈值
thr1=[thr_h;thr_v;thr_d];%三维矩阵,长度为N
newCH=wdencmp(‘lvd’,CH,WAVELET_NAME,2,thr1,‘s’);%选择软阈值
newCV=wdencmp(‘lvd’,CV,WAVELET_NAME,2,thr1,‘s’);
newCD=wdencmp(‘lvd’,CD,WAVELET_NAME,2,thr1,‘s’);
end
axes(handles.axes_newCA);
image(newCA);
axes(handles.axes_newCH);
image(newCH);
axes(handles.axes_newCV);
image(newCV);
axes(handles.axes_newCD);
image(newCD);
%%
% 五、重构
%%
CA_Temp = RanksInterpolation(newCA,‘r’,2);
CH_Temp = RanksInterpolation(newCH,‘r’,2);
CloumnTemp1 = RanksConv(CA_Temp,Lo_R,‘c’)+RanksConv(CH_Temp,Hi_R,‘c’);
CV_Temp = RanksInterpolation(newCV,‘r’,2);
CD_Temp = RanksInterpolation(newCD,‘r’,2);
CloumnTemp2 = RanksConv(CV_Temp,Lo_R,‘c’)+RanksConv(CD_Temp,Hi_R,‘c’);
CloumnTempA = RanksInterpolation(CloumnTemp1,‘c’,2);
CloumnTempB = RanksInterpolation(CloumnTemp2,‘c’,2);
RowTemp = RanksConv(CloumnTempA,Lo_R,‘r’)+RanksConv(CloumnTempB,Hi_R,‘r’);
Image_R =wkeep(RowTemp,size(HANDDLE_IMAGE),‘c’); %提取向量和矩阵的部分
axes(handles.axes_worked);
image (Image_R)
setappdata(handles.figure_wavelet,‘Image_R’,Image_R);
%HANDDLE_IMAGE = img_src; %为避免后续程序中误用X故用自定义变量替代
%image(HANDDLE_IMAGE);
% imshow(X); %用imread读入图片,并用imshow在axes_src上显示
% WAVELET_NAME = ‘sym8’;
%[Lo_D,Hi_D,Lo_R,Hi_R]=wfilters(WAVELET_NAME);
%RowLo_DTemp = RanksSampling(RanksConv(HANDDLE_IMAGE,Lo_D,‘r’),‘c’,2);
%CA = RanksSampling(RanksConv(RowLo_DTemp,Lo_D,‘c’),‘r’,2);
%subplot(221);image(CA);colormap(map);title(‘Lo_D低通分解后的图像CA’)%画出CA的图像
% — Executes on selection change in popupmenu1.
function popupmenu1_Callback(hObject, eventdata, handles)
% hObject handle to popupmenu1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,‘String’)) returns popupmenu1 contents as cell array
% contents{get(hObject,‘Value’)} returns selected item from popupmenu1
% — Executes on selection change in wavelet_style.
function wavelet_style_Callback(hObject, eventdata, handles)
% hObject handle to wavelet_style (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,‘String’)) returns wavelet_style contents as cell array
% contents{get(hObject,‘Value’)} returns selected item from wavelet_style
WAVELET_NAME = ‘haar’;
val = get(handles.wavelet_style,‘Value’); %获取下拉框的值
switch val %选择小波
case 1
WAVELET_NAME = ‘haar’
case 2
WAVELET_NAME = ‘db2’;
case 3
WAVELET_NAME = ‘db4’;
case 4
WAVELET_NAME = ‘db6’;
case 5
WAVELET_NAME = ‘db8’;
case 6
WAVELET_NAME = ‘db10’;
case 7
WAVELET_NAME = ‘sym2’;
case 8
WAVELET_NAME = ‘sym4’;
case 9
WAVELET_NAME = ‘sym6’;
case 10
WAVELET_NAME = ‘sym8’;
case 11
WAVELET_NAME = ‘sym10’;
case 12
WAVELET_NAME = ‘coif1’;
case 13
WAVELET_NAME = ‘coif3’;
case 14
WAVELET_NAME = ‘coif5’;
case 15
WAVELET_NAME = ‘dmey’
case 16
WAVELET_NAME = ‘haar’
end
setappdata(handles.figure_wavelet,‘WAVELET_NAME’,WAVELET_NAME);
% — Executes during object creation, after setting all properties.
function wavelet_style_CreateFcn(hObject, eventdata, handles)
% hObject handle to wavelet_style (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,‘white’);
end
% — Executes on selection change in filter_style.
function filter_style_Callback(hObject, eventdata, handles)
% hObject handle to filter_style (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,‘String’)) returns filter_style contents as cell array
% contents{get(hObject,‘Value’)} returns selected item from filter_style
Filter_style = get(handles.filter_style,‘Value’);
setappdata(handles.figure_wavelet,‘Filter_style’,Filter_style);
% — Executes during object creation, after setting all properties.
function filter_style_CreateFcn(hObject, eventdata, handles)
% hObject handle to filter_style (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,‘BackgroundColor’), get(0,‘defaultUicontrolBackgroundColor’))
set(hObject,‘BackgroundColor’,‘white’);
end
% --------------------------------------------------------------------
function m_thanks_Callback(hObject, eventdata, handles)
% hObject handle to m_thanks (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
h = thanks;
% --------------------------------------------------------------------
function m_about_Callback(hObject, eventdata, handles)
% hObject handle to m_about (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
h = about;
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]韩天奇,杨文杰,赵建光.基于小波变换阈值图像去噪分析[J].软件. 2021,42(06)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合