1.基本概念
小波变换是一种基于函数的数学变换,将信号分解成多个不同比例和频率的波的加权和,从而实现对信号的分析和处理。与傅里叶变换不同,小波变换具有时域和频域两个维度的分析能力,可以更好地理解信号的局部特征和结构信息。
在小波变换中,信号通过与不同尺度的小波函数(小波基)进行卷积和内积运算,得到不同尺度和频率的小波系数。这个过程可以通过分解滤波器和重构滤波器来实现,其中分解滤波器用来提取高频小波系数,重构滤波器用来提取低频小波系数,从而实现信号的逐层分解。最后合成所有的小波系数,就可以获得原始信号。
小波变换具有多尺度、多分辨率的特点,能够提取信号的时空分布特征,并且具有良好的局部分析能力。因此,在信号处理、图像处理、音频处理等领域都有广泛应用。常见的小波变换包括Haar小波、Daubechies小波、Symlet小波、Coiflet小波等,不同的小波基适合处理不同类型的信号和图像。
在实际应用中,小波变换常用于信号去噪、压缩、特征提取、图像增强等方面。为了获得理想的效果,通常需要选择合适的小波基、分解层数和阈值等参数,并根据具体情况进行预处理和后处理。
2.单层小波分解
clear all;
close all;
clc;
I=imread('lena.bmp');
I=rgb2gray(I);
[cal,chd1,cvd1,cdd1]=dwt2(I,'bior3.7');
cal=uint8(cal);
figure;
subplot(221),imshow(cal),title('近似分量');
subplot(222),imshow(chd1),title('细节水平分量');
subplot(223),imshow(cvd1),title('细节垂直分量');
subplot(224),imshow(cdd1),title('细节对角分量');
3.单层小波重构
clear all;
close all;
clc;
load woman;
nbcol=size(map,1);
[cA,cH,cV,cD]=dwt2(X,'db1');%利用db1小波,进行单层图像分解
sX=size(X);
A0=idwt2(cA,cH,cV,cD,'db4',sX);%用小波分解的第一层系数进行重构
figure;
subplot(131),imshow(uint8(X)),title('原图');
subplot(132),imshow(uint8(A0)),title('重构图');
subplot(133),imshow(uint8(X-A0)),title('差异图像');
4.多层小波分解
clear all;
close all;
clc;
load woman;
nbcol=size(map,1);
[c,s]=wavedec2(X,2,'db2');%采用db2小波进行2层图像分解
siz=s(size(s,1),:);
ca2=appcoef2(c,s,'db2',2);%提取多层小波分解结构C和S的第2层小波交换的近似系数
chd2=detcoef2('h',c,s,2);%利用多层小波分解结构C和S来提取图像第2层的水平分量
cvd2=detcoef2('v',c,s,2);%利用多层小波分解结构C和S来提取图像第2层的垂直分量
cdd2=detcoef2('d',c,s,2);%利用多层小波分解结构C和S来提取图像第2层的对角分量
chd1=detcoef2('h',c,s,1);%利用多层小波分解结构C和S来提取图像第1层的水平分量
cvd1=detcoef2('v',c,s,1);%利用多层小波分解结构C和S来提取图像第1层的垂直分量
cdd1=detcoef2('d',c,s,1);%利用多层小波分解结构C和S来提取图像第1层的对角分量
cal1=ca2+chd2+cvd2+cdd2;%叠加重构近似图像
cal=appcoef2(c,s,'db4',1);%提取多层小波分解结构C和S的第1层小波交换的近似系数
figure;
subplot(141),imshow(uint8(wcodemat(ca2,nbcol)));%wcodemat:对图像数据进行伪彩色编码
title('2层分解的各分量')
subplot(142),imshow(uint8(wcodemat(chd2,nbcol)));
subplot(143),imshow(uint8(wcodemat(cvd2,nbcol)));
subplot(144),imshow(uint8(wcodemat(cdd2,nbcol)));
figure;
subplot(141),imshow(uint8(wcodemat(cal1,nbcol)));
title('1层分解的各分量')
subplot(142),imshow(uint8(wcodemat(chd1,nbcol)));
subplot(143),imshow(uint8(wcodemat(cvd1,nbcol)));
subplot(144),imshow(uint8(wcodemat(cdd1,nbcol)));
5.多层小波重构
clear all;
close all;
clc;
X=imread('lena.bmp');
X=rgb2gray(X);
[c,s]=wavedec2(X,2,'db2');%采用db2小波进行2层图像分解
siz=s(size(s,1),:);
ca2=appcoef2(c,s,'db2',2);%提取多层小波分解结构C和S的第2层小波交换的近似系数
chd2=detcoef2('h',c,s,2);%利用多层小波分解结构C和S来提取图像第2层的水平分量
cvd2=detcoef2('v',c,s,2);%利用多层小波分解结构C和S来提取图像第2层的垂直分量
cdd2=detcoef2('d',c,s,2);%利用多层小波分解结构C和S来提取图像第2层的对角分量
a2=upcoef2('a',ca2,'db4',2,siz);%利用upcoef2进行重构
hd2=upcoef2('h',chd2,'db4',2,siz);
vd2=upcoef2('v',cvd2,'db4',2,siz);
dd2=upcoef2('d',cdd2,'db4',2,siz);
A1=a2+hd2+vd2+dd2;
[cal,ch1,cv1,cd1]=dwt2(X,'db4');
a1=upcoef2('a',cal,'db4',2,siz);%利用upcoef2进行重构
hd1=upcoef2('h',ch1,'db4',2,siz);
vd1=upcoef2('v',cv1,'db4',2,siz);
dd1=upcoef2('d',cd1,'db4',2,siz);
A0=a1+hd1+vd1+dd1;
figure;
subplot(141),imshow(uint8(a2)),title('2层分解重构后的近似分量');
subplot(142),imshow(hd2),title('细节水平分量');
subplot(143),imshow(vd2),title('细节垂直分量');
subplot(144),imshow(dd2),title('细节对角分量');
figure;
subplot(141),imshow(uint8(a1)),title('单层分解重构后的近似分量');
subplot(142),imshow(hd1),title('细节水平分量');
subplot(143),imshow(vd1),title('细节垂直分量');
subplot(144),imshow(dd1),title('细节对角分量');
figure;
subplot(131),imshow(X),title('原图');
subplot(132),imshow(uint8(A1)),title('2层分解重构的近似图形');
subplot(133),imshow(uint8(A0)),title('单层分解重构的近似图形');