【优化覆盖】粒子群算法求解传感器覆盖优化问题【含Matlab源码 1493期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab优化求解仿真内容点击👇
Matlab优化求解(仿真科研站版)

⛄一、无线传感器网络覆盖优化问题简介

1无线传感器网络覆盖优化问题
1.1 无线传感器网络模型

在无线传感器网络中, 节点数量以及节点划分区域直接关系着无线传感器网络对目标事物覆盖死角面积, 增多节点数量能够提高网络覆盖密度。将节点更多地划分在离目标事物距离近的区域内, 可以增强网络数据传输的安全性和准确性。无线传感器网络认知模型搭建的目的就是对无线传感器网络的覆盖死角进行定义和测量, 为此, 基于粒子群算法的无线传感器网络覆盖优化方法可看成是对认知模型的参数优化问题。

传感器网络节点容易受到噪音和电磁波的扰乱造成传输误差, 这些因不可抗拒因素导致的一系列缩减网络覆盖率问题被统称为无效事件。设无线传感器网络认知模型在起点坐标为S、终点坐标为p的节点上测量到存在无效事件的几率为P (S, p) , 降低P (S, p) 即可提高覆盖率。P (S, p) 的定义式为:
在这里插入图片描述
式中:β是节点认知力衰减函数;d (S, p) 表示S与p之间的欧几里得度量。

从式 (1) 中能够明显看出, 如果d (S, p) =0, 则P (S, p) =1, 此时的模型测量工作是无意义的。为此, 需要对式 (1) 进行改进, 为其指定一个节点几率约束值r, 则式 (1) 可变更为:
在这里插入图片描述
式 (2) 可表示无线传感器网络认知模型的最终表达式, 从中能够得知, 模型已将无线传感器网络覆盖优化工作转化成在r≤d (S, p) <2r条件下的P (S, p) 最小值问题。

1.2 覆盖率优化问题描述
将无线传感器网络对目标物体的监控区域看成一个二维区域, 二维区域中存在N个已知坐标的节点, 设区域中所有节点的认知半径均为R1, 节点传输半径均为R2。若想在维系网络稳定通信的同时将电磁波的不良影响降至最低, 可令R2=2R1。
在这里插入图片描述
式中:β1, β2是无线传感器网络节点的测量项目数据;λ1, λ2是参数, λ1=r+d, λ2=2r-d。

将式 (3) 耦合可以得到无线传感器网络覆盖率的表达式:
在这里插入图片描述

2 粒子群算法的传感器网络覆盖优化
根据上述描述, 使用粒子群算法优化无线传感器网络覆盖率, 简要介绍粒子群算法的基本原理, 对网络覆盖优化流程进行重点设计。

2.1 粒子群算法的工作原理
粒子群算法是进化算法的一个流派, 也是生物随机索引算法中的一个分支, 是当前的研究热点。粒子群算法的基本原理如图1所示。
在这里插入图片描述
图1 粒子群算法基本原理
由图1可知, 粒子群算法的实现非常简单, 其基本原理就是使用迭代方式得到最优解, 对粒子的速度和坐标进行实时更新。算法先初始化粒子, 将历史最优解赋予粒子。在算法进入迭代流程前, 先设置一个位置参数g的最大值, 即循环系数, 负责控制算法的迭代次数。每迭代一次, 位置参数g的值便增加1, 当g大于循环系数, 则停止迭代。粒子群算法的迭代工作可得到粒子适应度, 并以适应度为标准依次更新粒子的历史最优解、粒子群最优解以及粒子的速度和坐标。粒子速度vN1与坐标xi1的更新方程为:
在这里插入图片描述
式中:vN, xi是粒子初始设定值;c1, c2是粒子群算法的学习因子, 通常取值为2;rand1, rand2是随机参数;bestN是粒子适应度约束值。

2.2 无线传感器网络覆盖优化流程
基于粒子群算法的无线传感器网络覆盖优化方法的优化流程如图2所示。
在这里插入图片描述
图2 无线传感器网络覆盖优化流程
首先对模型进行编码, 其目的是固定节点位置, 粒子群算法的编码是一种二进制百兆数据码, 编码长度与无线传感器网络节点数量相等。当模型中节点参数满足r≤d<2r, 为获取P (x, y, cN) 的最大值, 粒子群算法的编码结果应满足下式:
在这里插入图片描述
式 (6) 中的元素取值为0或1, 0表示传感器节点可以被重新安置, 1表示固定节点。

适应度是评价最优解质量的函数, 在粒子群算法进行迭代工作前, 需要提前设置适应度函数并计算出无线传感器网络认知模型的初始适应度, 方便对迭代结果进行对比, 输出最合适的节点优化位置, 实现对无线传感器网络覆盖率的最佳优化。

在式 (6) 给出的编码基础上, 使用式 (7) 计算模型适应度:
在这里插入图片描述
式中:无线传感器网络覆盖率瞬时值R1可通过式 (4) 进行求取;w1和w2分别表示R1在无线传感器网络中的初始权重和实际权重。

当式 (7) 满足w1+w2=1时, P (x, y, cN) 可达最大值。因此, 粒子群算法迭代工作的目标就是令w1+w2=1。实现迭代目标后, 基于粒子群算法的无线传感器网络覆盖优化方法需要对无线传感器网络的节点位置进行更新, 并输出优化后的无线传感器网络覆盖率。

⛄二、部分源代码

%粒子群算法实现*****
%%
clc
clear
clear all
%%
%设定通信半径为12
tic;

R=12;
%% 粒子群参数
maxgen=1000; %迭代次数
sizepop=30; %粒子规模,每一个粒子代表一个解
Wmax=0.9;
Wmin=0.4;
%% 参数初始化
%粒子群算法中的两个参数
c1 = 2.0;
c2 = 2.0;
Vmax=20; %最大速度
Vmin=-20; %最小速度
popmax=100; %最大值
popmin=0; %最小值
yfitness=zeros(sizepop,2); %1行maxiter列矩阵,存放每一次迭代的最优值的空间矩阵
%% 产生初始粒子和速度
pop=[A(:,1), A(:,2)] ; %初始种群
for i=1:sizepop

V(i,:)=rands(1,2)*5;                         %初始化速度

end

%dist=Distance(pop(:,1),pop(:,2)); %初始距离
%计算适应度
fitness=fun(pop(:,1),pop(:,2)); %粒子群的适应度
gbest=pop; %当前个体最优解向量组,矩阵
fitnessgbest=fitness;
fitnesszbest=fitness; %群体最优记录
yfitness=pop;
%% 迭代寻优
for i=1:maxgen

W=Wmax-((Wmax-Wmin)/maxgen)*i;
for j=1:sizepop
    
    %速度更新
    V(j,:) = W*V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(yfitness(j,:) - pop(j,:));
 
end 
fitness(i)=fun(pop(:,1),pop(:,2));      %计算粒子群的适应度
     if fitness(i) > fitnessgbest
        gbest=pop;
       fitnessgbest(i)=fitness(i);
    end
    %群体极值更新
    if fitness(i)>fitnesszbest
        yfitness=pop;
        fitnesszbest(i)=fitness(i);    
    end

%dist=Distance(pop(:,1),pop(:,2));
zz(i)=max(fitnesszbest);

end
zbest=max(zz);
%% 结果分析
figure(1);
plot(zz) %画出迭代图
set(gcf,‘color’,‘w’);
title(‘算法训练过程’,‘fontsize’,12);
xlabel(‘迭代次数’,‘fontsize’,12);
ylabel(‘覆盖率’,‘fontsize’,12);

%% 图形输出
figure(2)
plot(yfitness(:,1),yfitness(:,2),‘+’)

hold on

end
a=[yfitness(:,1),yfitness(:,2)]
set(gcf,‘color’,‘w’);
% 窗口显示
disp([zbest] );
toc
function z=fun(x,y)
%x input 圆心横坐标
%y input 圆心纵坐标
%z output 覆盖率
L=100; % 正方形区域边长
R=12; % 圆半径
[m,n]=meshgrid(1:L);
Ar=linspace(0,pi*2,200); % 圆周角度
for i=1:30
D=sqrt([m-x(i)].2+[n-y(i)].2); % 计算坐标点到圆心的距离
[m0,n0]=find(D<=R); % 检测出圆覆盖点的坐标
Ind=sub2ind([L,L],m0,n0); % 坐标与索引转化
M(Ind)=1; % 改变覆盖状态
end
scale=sum(M(1:end))/L/L; % 计算覆盖比例

z=scale;

end

⛄三、运行结果

在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]张红霞.基于粒子群算法的无线传感器网络覆盖优化[J].现代电子技术. 2017,40(09)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

  • 14
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
粒子群算法(Particle Swarm Optimization, PSO)是一种基于群体智能的优化算法,常用于解决传感器覆盖优化问题。下面是使用Matlab实现PSO算法求解传感器覆盖优化问题源码示例。 ```matlab function [bestPosition, bestFitness] = PSO(sensorPositions, targetPositions, numParticles, numIterations) % 粒子群算法求解传感器覆盖优化问题 % 输入参数: % sensorPositions - 传感器位置矩阵,每一行表示一个传感器的位置 % targetPositions - 目标位置矩阵,每一行表示一个目标的位置 % numParticles - 粒子数 % numIterations - 迭代次数 % 输出参数: % bestPosition - 最优解(传感器位置) % bestFitness - 最优解对应的适应度值 % 初始化粒子位置和速度 numSensors = size(sensorPositions, 1); positions = rand(numParticles, numSensors); velocities = rand(numParticles, numSensors); % 初始化个体最优位置和适应度值 pBestPositions = positions; pBestFitnesses = evaluateFitness(pBestPositions, sensorPositions, targetPositions); % 寻找全局最优位置和适应度值 [bestFitness, bestParticle] = min(pBestFitnesses); bestPosition = pBestPositions(bestParticle, :); % 迭代更新粒子位置和速度 for iter = 1:numIterations inertiaWeight = 0.5; % 惯性权重 cognitiveWeight = 1; % 认知权重 socialWeight = 1; % 社会权重 % 更新速度 velocities = inertiaWeight * velocities + ... cognitiveWeight * rand(numParticles, numSensors) .* (pBestPositions - positions) + ... socialWeight * rand(numParticles, numSensors) .* (repmat(bestPosition, numParticles, 1) - positions); % 更新位置 positions = positions + velocities; % 限制粒子位置在取值范围内 positions = max(positions, 0); positions = min(positions, 1); % 更新个体最优位置和适应度值 fitnesses = evaluateFitness(positions, sensorPositions, targetPositions); updateIndices = fitnesses < pBestFitnesses; pBestPositions(updateIndices, :) = positions(updateIndices, :); pBestFitnesses(updateIndices) = fitnesses(updateIndices); % 更新全局最优位置和适应度值 [minFitness, minParticle] = min(pBestFitnesses); if minFitness < bestFitness bestFitness = minFitness; bestPosition = pBestPositions(minParticle, :); end end end function fitnesses = evaluateFitness(positions, sensorPositions, targetPositions) % 计算适应度值 numParticles = size(positions, 1); fitnesses = zeros(numParticles, 1); for i = 1:numParticles selectedSensors = sensorPositions(positions(i, :) > 0.5, :); coveredTargets = zeros(size(targetPositions, 1), 1); for j = 1:size(selectedSensors, 1) distances = sqrt(sum((repmat(selectedSensors(j, :), size(targetPositions, 1), 1) - targetPositions).^2, 2)); coveredTargets(distances <= positions(i, j)) = 1; end fitnesses(i) = sum(coveredTargets) / size(targetPositions, 1); end end ``` 上述代码为一个函数,输入传感器位置矩阵、目标位置矩阵、粒子数和迭代次数,输出最优解(传感器位置)和最优解对应的适应度值。具体实现过程如下: 1. 首先,根据传感器位置矩阵的行数获得传感器数目,并初始化粒子位置和速度矩阵。 2. 初始化个体最优位置矩阵和适应度值矩阵,各自与粒子位置矩阵相同。 3. 初始化全局最优适应度值和最优粒子索引,分别为个体最优适应度值矩阵的最小值和对应索引。 4. 开始迭代更新,根据惯性权重、认知权重和社会权重,更新粒子速度和位置。 5. 更新粒子位置后,将超过取值范围的位置调整回区间[0,1]内。 6. 针对所有粒子,计算每个粒子对应的适应度值,并更新个体最优适应度值和位置。 7. 更新个体最优适应度值和位置后,检查是否有更优解出现,若有则更新全局最优适应度值和位置。 8. 迭代结束后,返回最优解(传感器位置)和最优解对应的适应度值。 使用以上源码,可以求解传感器覆盖优化问题

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值