【心电信号去噪】数字滤波器+平滑滤波器心电信号滤波对比【含Matlab源码 2895期】

💥💥💞💞欢迎来到Matlab仿真科研站博客之家💞💞💥💥

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。

🍎个人主页:Matlab仿真科研站博客之家

🏆代码获取方式:
💥扫描文章底部QQ二维码💥

⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。
在这里插入图片描述

⛄更多Matlab信号处理(仿真科研站版)仿真内容点击👇
Matlab信号处理(仿真科研站版)

⛄一、心电信号处理简介

1 引 言
ECG是一种基本的人体生理信号, 具有重要的临床诊断价值。其特点是信号微弱, 信噪比小, 一般正常人的心电信号频率在0.05~100 Hz范围内, 幅度为10 μV (胎儿) ~5 mV (成人) 。在检测心电信号时, 易受到仪器、人体活动等方面的影响, 所检测的心电信号常伴有干扰。心电信号的干扰主要有以下3种:工频干扰、基线漂移和肌电干扰。心电信号的干扰对心电数据分析和处理有很大的影响。因而, 利用数字滤波技术滤除心电信号中存在的各种干扰, 准确检测心电信号, 是心电信号处理的重要工作。

自适应信号处理是近十几年来发展迅速的信号处理方法, 其特点是在没有先验知识的情况下, 直接利用观测数据不断递归更新处理参数, 以逐步逼近某一最优值。小波分析同样是近些年来发展起来的一种新的数学理论和方法, 目前已被成功地应用于许多领域。作为一种新的时频分析方法, 小波分析由于具有多分辨分析的特点, 能够聚焦到信号的任意细节进行多分辨率的时频域分析, 因而被誉为“数学显微镜”。

国内刊物对ECG信号的消噪问题研究虽多, 但一般只是针对某种噪声干扰, 或仅借助于经典滤波方法, 且因肌电干扰较难滤除而对其论述甚少。我们则综合利用LMS自适应算法及小波理论等现代数字信号处理方法, 对心电信号检测过程中引入的上述3种噪声干扰, 系统而有针对性的设计了相应滤波器——自适应陷波器、小波变换滤波器及自适应信号分离器, 来滤除50 Hz工频干扰、基线漂移、肌电干扰等噪声, 特别是对于肌电干扰的滤除进行了尝试。经仿真与实验结果表明, 上述滤波器能有效地消除相应噪声, 得到滤波效果较好的心电信号。

2 滤波器的算法实现
2.1 工频干扰与自适应陷波器

自适应滤波器的典型应用是自适应噪声对消器。噪声对消使用在信号很弱, 或者信号不可检测的噪声场中, 将从一个或多个传感器取得的辅助输入或者参考输入加以过滤, 并从包含信号和噪声的原始输入中减去。结果, 原始噪声就受到衰减, 或者由于对消而被除掉。图1为自适应噪声对消器的原理图。它有两个输入:原始输入与参考输入。原始输入为受干扰信号dj (dj=s+v0) ;参考输入是信号v1, 它与干扰信号v0相关但与信号s不相关。图中自适应滤波器AF (Adaptive filter) 接受误差信号ej的控制调整滤波器权向量Wj, 使输出yj趋于等于dj中与它相关的v0, 于是ej作为dj与yj之差就非常接近或等于信号被检测信号s[3]。
在这里插入图片描述
图1 自适应噪声对消器
现在来证明这一结论。设s、v0、v1都是平稳随机过程并具有零均值 (因而yj也如此) 。由于
ej=dj-yj=s+v0-yj (1)
取ej的自相关得:
在这里插入图片描述
如前所述, 自适应过程就是自动调节滤波器权向量Wj使得E[ej2]=min的过程。上式第一项为信号功率E[s2], 它与Wj无关。第三项等于零, 因为s与v0、v1及yj均不相关, 所以要使E[ej2]最小等价于式 (2) 第二项最小, 即:
E[e2j]min⇔E[ (v0-yi) 2]min (3)
由式 (1) 得:
v0-yj=ej-s (4)
所以当E[ (v0-yj) 2]被最小化时, E[ (ej-s) 2]也被最小化了, 即ej以最小均方误差趋于s, 可能的最好情况为yj=v0, 则ej=s。
因此, 自适应滤波器可以从噪声中提取信号。虽然上述结果用维纳滤波器也能实现, 但是设计维纳滤波器需要预先知道s与v0或v1的统计特性, 而自适应滤波器不需要, 并且当信号或噪声统计特性变化时, 自适应滤波器也能自适应地调节它的冲击响应特性来适应这一变化。

自适应噪声抵消器的一个典型应用是自适应陷波器。如果信号中的噪声是单色干扰 (频率为ω0的正弦波干扰) , 则消除这种干扰的方法是应用陷波器。 用自适应滤波器组成的陷波器与一般固定网络的陷波器比较有下列优点:
(1) 能够自适应地准确跟踪干扰信号的频率;
(2) 容易控制带宽。
图2给出了一个具有两个权的单频干扰对消器组成的陷波器。原始输入为:任意信号s (t) 与单频干扰Acos (ω0t+a) 的叠加, 经采样后送入dj端, 故有

dj=sj+Acos (ω0jT+a) (5)
在这里插入图片描述
图2 自适应陷波器
参考输入为一标准正弦波cos (ω0t) , 经采样后送入x1j及x2j端, 其中后者经过90°相移, 因而有x1j=cos (ω0jT) , x2j=sin (ω0jT) , 两个权值w1j及w2j使得组合后的正弦波幅值和相位都可以调整, 因为两个权表示有两个自由度调整。经组合相加后得到yj其幅度和相位都可以与原始输入中的干扰分量相同, 使输出ej中的单频干扰得以抵消, 达到陷波的目的。由于心电信号中的工频干扰为频率固定的50 Hz正弦波信号, 故可用自适应陷波器滤除。

2.2 基线漂移与小波变换滤波器
基线漂移是低频干扰信号, 频率范围为0.05~2.00 Hz。常用的FIR和IIR滤波器截止频率固定, 在噪声频率超过其截止频率时, 无法发挥滤波作用。小波分析由于具有多分辨分析的特点而被誉为“数学显微镜”。因此, 可以利用小波的这一特性进行基线漂移的滤除。

小波变换是由加窗傅立叶变换发展起来的, 具有时频局域化的特性。小波变换可以将信号分解成不同的频段, 这为处理ECG信号提供了一个有力的手段。连续小波定义如下:
在这里插入图片描述
其中:a≠0为尺度因子;b为时移因子;函数Ψa, b (t) 称做小波。

在实际计算过程中, 连续小波必须加以离散化, 最常用的方法是对尺度进行二进制离散, 即令a=2j, b取整数。设x (n) 为离散信号, 按正交小波基在第j层上展开如下:

x (n) =D2j[x (n) ]+A2j[x (n) ] (7)

其中:D2j为细节信号, 代表第j层上高频分量;A2j为逼近信号, 表示该层的低频分量。

在小波变换中应选择合适的母小波易于信号的分解和重构。选用Coif小波作为分析小波。

2.3 肌电干扰与自适应信号分离器
肌电干扰是由于人体运动、肌肉收缩而引起的干扰, 影响心电信号的肌电信号主要是骨骼肌产生的动作电位, 它的频带是2~2 000 Hz。同工频干扰一样, 肌电干扰也会掩盖心电波形中的细节信息, 使得心电波形难以辨认。
参考输入是原始信号的k步延时的自适应对消器可以组成自适应预测系统、谱线增强系统以及信号分离系统, 下面讨论如何用自适应信号分离器来滤除肌电干扰[3]。
图3表示一个用作信号分离目的的系统, 当输入中包括两种成分:宽带信号与周期信号时, 为了分离这两种信号, 可以一方面将该输入送入原始输入dj端, 另一方面把它延时足够长时间后送入AF的参考输入v1端。经过延时后宽带成分已与原来的输入不相关, 而周期性成分延时前后保持强相关。图中s0为周期信号, v0为宽带信号。

于是在ej输出中将周期成分抵消只存在宽带成分, 在yj输出中只存在周期成分, 此时, AF自动调节滤波器权向量Wj, 以达到对周期成分起选通作用。算法推导同2.1。
在这里插入图片描述
图3 自适应信号分离器

⛄二、部分源代码

clear,clc;
%% 导入ECGrawdata.txt文件中的数据
val = importdata(‘ECGrawdata.txt’);
% 提取ECGrawdata.txt文件中的数据
data = val.data;
data1 = data(:,1);
data2 = data(:,2);
N = length(data1);
% 采样时间
t = 0:0.004:20.476;
%% 获取4个周期的心电信号
t1 = 3.6:0.004:9.832;
data1_1 = data1(901:2459,:);
data2_1 = data2(901:2459,:);
%% 加工频噪声
t2 = (0:0.004:6.235);
drift = 0.1sin(2pi50t2)';
x2 = data1_1+drift;
x2_1 = data2_1+drift;
%% 滤波
% M = 5
M = 5;
a1 = [1];
b1 = (1/M)*ones(1,M);
y1 = filter(b1,a1,x2);
y2 = filter(b1,a1,x2_1);

%% 二阶数字陷波器设计
% 采样频率
fs = 250;
r = 1-4pi/500;
f0 = 50;
w0 = 2
pif0/fs;
k = 1;
A = k
[1,-(exp(1jw0)+exp(-1jw0)),1];%分子系数
B = [1,-r*(exp(1jw0)+exp(-1jw0)),power(r,2)];%分母系数
%除噪
x3 = filter(A,B,x2);
x3_1 = filter(A,B,x2_1);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]张泾周,张光磊,戴冠中.自适应算法与小波变换在心电信号滤波中的应用[J].生物医学工程学杂志. 2006,(05)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用

1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化

2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类

2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测

2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测

3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别

3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建

4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题

4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划

4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划

4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配

5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏

6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏

7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断

7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真

7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真

7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰

7.5 无人机通信

7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值