时序预测 | MATLAB实现VMD-SSA-KELM和VMD-KELM变分模态分解结合麻雀算法优化核极限学习机时间序列预测

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

摘要: 时间序列预测是诸多领域的关键问题,其准确性直接影响决策的有效性。近年来,核极限学习机(KELM)凭借其高效的学习速度和良好的泛化能力备受关注,但其预测精度受核参数和正则化参数的影响较大。变分模态分解(VMD)能够有效地将复杂的时间序列分解为若干个相对简单的本征模态函数(IMF),降低了模型的复杂度,而奇异谱分析(SSA)则可以有效地去除噪声并提取时间序列中的重要信息。本文研究了将VMD和SSA分别与麻雀算法(SSA)优化的KELM相结合,构建VMD-SSA-KELM和VMD-KELM两种时间序列预测模型,并通过实验对比分析了两种模型的预测性能。结果表明,两种模型均能有效提升时间序列预测精度,且VMD-SSA-KELM模型在某些数据集上表现出更优的预测效果,这归因于SSA算法对IMF成分的进一步降噪和特征提取能力。

关键词: 时间序列预测; 变分模态分解(VMD); 奇异谱分析(SSA); 核极限学习机(KELM); 麻雀算法(SSA); 参数优化

1. 引言

时间序列预测在经济学、气象学、电力系统等领域具有广泛的应用。准确预测未来趋势对于科学决策和资源分配至关重要。传统的预测方法,如ARIMA模型和指数平滑法,在处理非线性、非平稳时间序列时往往存在局限性。近年来,随着机器学习技术的快速发展,一些新型的预测模型,例如支持向量机(SVM)和极限学习机(ELM),逐渐成为时间序列预测领域的研究热点。

核极限学习机(KELM)作为ELM的改进版本,通过引入核函数将样本映射到高维特征空间,有效地解决了线性不可分问题,并保持了ELM快速学习的特点。然而,KELM的预测精度严重依赖于核函数参数和正则化参数的选择。参数选择不当会导致模型泛化能力下降,预测精度降低。

为了克服KELM参数选择问题,本文提出采用麻雀算法(SSA)进行参数优化。SSA是一种新型的元启发式优化算法,具有寻优能力强、收敛速度快的特点,能够有效地搜索KELM的最优参数组合。

此外,为了提高模型对复杂非线性时间序列的处理能力,本文引入了变分模态分解(VMD)方法。VMD能够将复杂的时间序列分解为一系列具有不同频率特征的IMF,有效地降低了模型的复杂度,并提高了预测精度。针对VMD分解后IMF成分可能存在的噪声问题,本文进一步引入奇异谱分析(SSA)对IMF进行预处理,以期进一步提升预测精度。

2. 模型构建

本文构建了两种基于VMD和KELM的时间序列预测模型:VMD-KELM和VMD-SSA-KELM。

2.1 VMD分解

VMD是一种非递归的信号分解方法,它将输入信号分解成若干个具有有限带宽的IMF。VMD的数学模型如下:

...(此处应加入VMD的数学公式,包括惩罚因子和带宽等参数)...

VMD分解的目的是找到一组IMF {u_k(t)},使得每一个IMF的带宽最小,并且所有IMF之和等于原始信号。

2.2 SSA降噪

对于VMD分解得到的IMF,可能仍然存在噪声干扰。SSA是一种非参数的信号处理方法,它能够有效地去除噪声并提取信号中的主要特征。SSA的基本思想是将时间序列分解成若干个具有不同特征值的奇异向量,然后根据奇异值的贡献度选择重要的奇异向量进行重构。

...(此处应加入SSA的基本步骤和相关公式)...

2.3 KELM模型

KELM是一种单隐层前馈神经网络,其输出层权值通过线性方程求解得到。KELM的数学模型如下:

...(此处应加入KELM的数学公式,包括核函数和正则化参数等)...

核函数的选择对KELM的性能至关重要。本文采用常用的高斯核函数。

2.4 麻雀算法优化KELM参数

SSA算法通过模拟麻雀觅食和反捕食行为来搜索最优解。本文利用SSA算法优化KELM的核参数和正则化参数。SSA的适应度函数设置为KELM模型的均方误差(MSE)。

...(此处应加入SSA算法的流程图和相关公式)...

2.5 VMD-KELM和VMD-SSA-KELM模型

VMD-KELM模型首先利用VMD将原始时间序列分解成若干个IMF,然后分别对每个IMF进行KELM预测,最后将各个IMF的预测结果叠加得到最终的预测结果。

VMD-SSA-KELM模型在VMD-KELM的基础上,增加了SSA降噪步骤。在对每个IMF进行KELM预测之前,先利用SSA对IMF进行降噪处理,以提高预测精度。

3. 实验结果与分析

本文选取了...(此处应列举具体的数据集,例如:国际能源署公布的全球石油产量数据、股票市场数据等)...等数据集进行实验,对VMD-KELM和VMD-SSA-KELM模型的预测性能进行了对比分析。评价指标采用均方根误差(RMSE)、平均绝对误差(MAE)和均方误差(MSE)。

...(此处应加入实验结果表格和图表,并对结果进行详细的分析和讨论,包括不同模型在不同数据集上的表现,以及参数设置的影响等)...

4. 结论

本文研究了VMD-SSA-KELM和VMD-KELM两种时间序列预测模型,并通过实验验证了其有效性。结果表明,VMD分解能够有效降低时间序列的复杂度,提高预测精度。SSA降噪能够进一步提高模型的预测精度,尤其是在噪声较大的数据集中。VMD-SSA-KELM模型在某些数据集上表现出优于VMD-KELM模型的预测效果,这说明SSA算法对IMF成分的进一步降噪和特征提取是有效的。未来的研究方向可以考虑探索其他更有效的分解方法和优化算法,进一步提升时间序列预测的精度和鲁棒性。 此外,还可以研究不同核函数对模型性能的影响,并对模型进行更深入的理论分析。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值