【无人机】使用HGS算法调整PD控制器增益的无人机动态性能数据——基于启发式的无人机路径跟踪优化附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

无人机(Unmanned Aerial Vehicle, UAV)凭借其高度的灵活性、机动性和成本效益,在遥感测绘、搜救行动、物流运输等领域得到了广泛应用。然而,无人机的飞行控制面临着严峻的挑战,尤其是在复杂环境下实现精确且鲁棒的路径跟踪。其根本原因在于无人机复杂的非线性动力学特性、外部扰动以及控制系统的参数不确定性。为了克服这些挑战,高效的控制器设计与参数优化至关重要。本文将探讨一种基于启发式秃鹰搜索 (HGS) 算法调整比例微分 (PD) 控制器增益,从而优化无人机动态性能并提升路径跟踪精度的策略。

传统的 PD 控制器因其结构简单、易于实现而被广泛应用于无人机控制。PD 控制器利用误差信号及其导数来产生控制指令,从而调整无人机的姿态和位置。比例增益 (Kp) 用于降低稳态误差,而微分增益 (Kd) 则用于抑制振荡,提高系统的阻尼性能。然而,固定增益的 PD 控制器难以适应无人机在不同飞行状态下的动态特性变化以及外部扰动的影响。因此,如何有效地调整 PD 控制器的增益,使其能够根据实时环境条件进行自适应调整,成为了提高无人机控制性能的关键问题。

传统的 PD 控制器增益整定方法主要包括:

  • 人工调试法 (Trial and Error):

     依赖于经验和不断尝试,效率低下且难以找到最优解。

  • 齐格勒-尼科尔斯法 (Ziegler-Nichols Method):

     易于实施,但对模型的精度要求较高,且可能导致系统振荡。

  • 基于模型的方法 (Model-based methods):

     需要建立精确的无人机动力学模型,计算复杂度高,难以适应实时性要求。

相对于传统的增益整定方法,基于启发式算法的优化方法具有显著的优势。启发式算法,如遗传算法 (GA)、粒子群算法 (PSO) 和蚁群算法 (ACO) 等,能够在复杂的搜索空间中有效地寻找全局最优解,无需精确的系统模型。它们具有良好的鲁棒性,能够适应参数不确定性和外部扰动的影响。

近年来,一种新型的启发式优化算法——秃鹰搜索 (HGS) 算法受到了研究者的广泛关注。HGS 算法模拟了秃鹰在觅食过程中的行为,具有收敛速度快、全局搜索能力强等优点。HGS 算法的核心思想在于秃鹰在不同阶段采取不同的搜索策略:

  1. 选择觅食区域 (Select the Space):

     秃鹰根据当前最佳位置和其他个体的位置,选择合适的觅食区域。

  2. 在选择的觅食区域内搜索猎物 (Search for Prey in the Selected Space):

     秃鹰在选择的觅食区域内,通过随机搜索或者基于自身经验的搜索,寻找猎物。

  3. 俯冲攻击猎物 (Dive and Attack the Prey):

     秃鹰锁定猎物后,迅速俯冲并攻击猎物。

将 HGS 算法应用于 PD 控制器增益的优化,可以有效地解决传统方法的局限性。其基本思路如下:

  1. 定义优化目标:

     选取合适的性能指标作为优化目标,例如跟踪误差、超调量、上升时间等。通常采用多目标优化方法,综合考虑不同性能指标。

  2. 建立适应度函数:

     将优化目标转化为适应度函数,用于评估每个秃鹰个体(代表一组 PD 控制器增益)的性能。

  3. HGS 算法优化:

     利用 HGS 算法在 PD 控制器增益的搜索空间中进行优化,寻找最佳的增益组合,使得适应度函数达到最优值。

具体而言,将 HGS 算法应用于无人机路径跟踪优化,可以按照以下步骤进行:

  1. 无人机动力学建模: 建立无人机的动力学模型,可以使用牛顿-欧拉法或者四元数法。

  2. PD 控制器设计: 设计基于姿态环和位置环的 PD 控制器。姿态环用于控制无人机的 roll, pitch, yaw 角,位置环用于控制无人机的 X, Y, Z 位置。

  3. HGS 算法初始化: 初始化 HGS 算法的参数,包括种群规模、最大迭代次数、搜索空间范围等。搜索空间范围定义了 PD 控制器增益 Kp 和 Kd 的取值范围。

  4. 适应度函数设计: 设计适应度函数,例如:

     

    scss

    Fitness = w1 * (1 / RMSE) + w2 * (1 / Overshoot) + w3 * (1 / SettlingTime)  

    其中,RMSE 代表均方根误差,Overshoot 代表超调量,SettlingTime 代表稳定时间。w1, w2, w3 为权重系数,用于调整不同性能指标的重要性。

  5. HGS 算法迭代: 进行 HGS 算法的迭代过程,更新每个秃鹰个体的位置(即 PD 控制器增益)。在每次迭代中,需要进行以下操作:

    • 将每个秃鹰个体的位置(PD 控制器增益)代入到无人机控制系统中。

    • 模拟无人机执行给定的路径跟踪任务。

    • 计算无人机的跟踪误差、超调量和稳定时间等性能指标。

    • 根据性能指标计算每个秃鹰个体的适应度值。

    • 更新秃鹰种群中最佳个体的位置。

  6. 最优增益选择: 经过多次迭代后,选择适应度值最高的秃鹰个体的位置作为最优的 PD 控制器增益。

  7. 验证与评估: 将优化后的 PD 控制器应用于无人机路径跟踪控制,验证其性能,并与其他控制方法进行比较。

基于 HGS 算法调整 PD 控制器增益的无人机动态性能数据,可以通过仿真实验和实际飞行实验获取。仿真实验可以在不同的环境条件下测试控制器的性能,例如不同的风力干扰、不同的路径形状等。实际飞行实验可以验证控制器在真实环境中的鲁棒性和可靠性。

通过大量的实验数据分析,可以得出以下结论:

  • HGS 算法能够有效地优化 PD 控制器的增益,提高无人机的路径跟踪精度和动态性能。

  • 优化后的 PD 控制器具有更好的抗干扰能力,能够适应不同的飞行环境。

  • HGS 算法具有较快的收敛速度,能够满足实时性要求。

尽管 HGS 算法在无人机控制领域展现出良好的应用前景,但仍然存在一些需要进一步研究的问题:

  • HGS 算法的参数选择对优化结果影响较大,需要进一步研究如何自适应地调整 HGS 算法的参数。

  • 如何将 HGS 算法与其他控制方法结合,例如模型预测控制 (MPC) 或自适应控制,以进一步提高控制器的性能。

  • 如何将 HGS 算法应用于更复杂的无人机控制任务,例如编队飞行、协同控制等。

总而言之,基于启发式 HGS 算法调整 PD 控制器增益的无人机动态性能数据,为无人机路径跟踪优化提供了一种有效的解决方案。通过优化 PD 控制器的增益,可以显著提高无人机的跟踪精度、动态性能和抗干扰能力,从而拓展无人机在各个领域的应用范围。未来,随着无人机技术的不断发展,基于启发式算法的无人机控制方法将发挥越来越重要的作用,为无人机的智能化发展注入新的活力。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值