综合能源系统分析的统一能路理论(三):《稳态与动态潮流计算》附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着能源转型和电力系统深度融合的加速推进,传统的单一能源系统分析方法已难以满足综合能源系统(Integrated Energy System, IES)复杂耦合特性带来的挑战。综合能源系统打破了电力、天然气、热力等多种能源系统之间的壁垒,通过能源转换、存储和协同优化,实现了能源的高效利用和环境友好。然而,这种集成也带来了多能流耦合、时空尺度差异大等复杂性,使得传统潮流计算方法在处理 IES 时面临诸多限制。统一能路理论(Unified Energy Flow Theory, UEFT)作为一种新兴的 IES 分析框架,以其简洁性和通用性受到了广泛关注。本文将聚焦 UEFT 在 IES 分析中的重要应用,特别是其在稳态与动态潮流计算方面的优势和贡献,并结合文献《综合能源系统分析的统一能路理论(三):稳态与动态潮流计算》,深入探讨其原理、方法和应用前景。

UEFT 的核心思想:统一的能量视角

UEFT 的核心思想在于将不同类型的能量流统一到一个共同的数学框架下进行分析。它将各种能源系统中的能量载体(例如电力、天然气、热力等)视为具有相似特征的“能量流”,并采用统一的数学模型描述这些能量流的传输、转换和存储过程。这种统一的能量视角避免了传统方法中对不同能源系统分别建模和分析的繁琐过程,简化了 IES 的整体建模和分析难度。

在传统方法中,电力、天然气和热力系统往往采用不同的物理定律和数学模型进行描述。例如,电力系统潮流计算通常基于功率平衡方程,天然气系统则基于压力平衡方程,而热力系统则基于热力学方程。这种差异使得跨能源系统的分析和优化变得复杂且困难。UEFT 则通过引入“能量势”的概念,将不同类型的能量流与能量势之间的关系统一起来。能量势可以理解为驱动能量流动的“动力”,例如电力系统中的电压、天然气系统中的压力、热力系统中的温度等。通过建立能量流与能量势之间的统一数学关系,UEFT 能够将不同能源系统中的能量流耦合在一起进行分析。

UEFT 在稳态潮流计算中的应用

稳态潮流计算是电力系统分析的基础,其目的是在给定系统拓扑结构、负荷需求和发电机出力的情况下,求解系统各节点的电压幅值、相角以及各支路的功率流动。在 IES 中,稳态潮流计算的意义更为重要,它不仅需要考虑电力系统的潮流分布,还需要考虑天然气、热力等其他能源系统的潮流分布,以及各种能源转换设备(例如热电联产机组、电制气设备等)的运行状态。

UEFT 在稳态潮流计算中的优势主要体现在以下几个方面:

  • 统一建模:

     UEFT 可以采用统一的数学模型描述不同类型的能源系统,从而简化了 IES 的整体建模过程。例如,可以将电力系统的功率平衡方程、天然气系统的压力平衡方程和热力系统的热量平衡方程统一到一个统一的方程组中,采用统一的迭代方法进行求解。

  • 易于处理耦合关系:

     IES 中存在大量的能源转换设备,这些设备将不同类型的能源耦合在一起。UEFT 可以通过统一的能量转换模型来描述这些设备的运行特性,从而方便地处理不同能源系统之间的耦合关系。例如,热电联产机组可以将天然气和电力耦合在一起,UEFT 可以通过建立天然气输入、电力输出和热力输出之间的关系模型来描述其运行特性。

  • 高效求解:

     UEFT 通常采用高效的迭代方法(例如牛顿-拉夫逊法)求解稳态潮流方程组。由于采用统一的数学模型,UEFT 可以有效地利用已有的电力系统潮流计算算法和技术,从而提高求解效率。

在具体应用中,UEFT 首先需要建立 IES 的统一能量流模型,包括电力系统模型、天然气系统模型、热力系统模型以及各种能源转换设备模型。然后,基于这些模型,构建 IES 的稳态潮流方程组。最后,采用高效的迭代方法求解该方程组,得到 IES 各节点的能量势和各支路的能量流分布。

UEFT 在动态潮流计算中的应用

动态潮流计算是电力系统动态安全分析的重要组成部分,其目的是分析系统在受到扰动后的动态响应,评估系统的稳定性。在 IES 中,动态潮流计算不仅需要考虑电力系统的动态特性,还需要考虑天然气、热力等其他能源系统的动态特性,以及各种能源转换设备的动态响应。

UEFT 在动态潮流计算中的优势主要体现在以下几个方面:

  • 多时间尺度建模:

     IES 中的不同能源系统具有不同的时间尺度特性。例如,电力系统的动态过程通常发生在毫秒级或秒级,而天然气系统和热力系统的动态过程通常发生在分钟级或小时级。UEFT 可以采用多时间尺度建模方法,分别描述不同能源系统的动态特性,从而更准确地模拟 IES 的动态响应。

  • 统一动态模型:

     UEFT 可以采用统一的数学模型描述不同能源系统的动态特性,从而简化了 IES 的整体动态建模过程。例如,可以将电力系统的发电机同步方程、天然气系统的管网动态方程和热力系统的温度动态方程统一到一个统一的方程组中,采用统一的数值积分方法进行求解。

  • 考虑能源转换设备动态响应:

     IES 中的能源转换设备的动态响应对系统的整体动态特性具有重要影响。UEFT 可以通过建立能源转换设备的动态模型来描述其动态响应,例如热电联产机组的蒸汽涡轮动态模型、电制气设备的动态模型等。

在具体应用中,UEFT 首先需要建立 IES 的统一动态模型,包括电力系统动态模型、天然气系统动态模型、热力系统动态模型以及各种能源转换设备动态模型。然后,基于这些模型,构建 IES 的动态潮流方程组。最后,采用数值积分方法求解该方程组,得到 IES 各节点的能量势和各支路的能量流随时间的动态变化。

《稳态与动态潮流计算》一书的主要内容

《综合能源系统分析的统一能路理论(三):稳态与动态潮流计算》一书深入探讨了 UEFT 在 IES 稳态与动态潮流计算中的应用。该书系统地介绍了 UEFT 的基本原理、数学模型和求解算法,并结合具体的 IES 案例,详细阐述了 UEFT 在稳态与动态潮流计算中的应用方法。

该书的主要内容包括:

  • UEFT 的基本原理:

     介绍了 UEFT 的核心思想、能量势的概念以及统一能量流模型的构建方法。

  • IES 的建模:

     详细介绍了电力系统、天然气系统、热力系统以及各种能源转换设备的建模方法。

  • 稳态潮流计算:

     介绍了基于 UEFT 的稳态潮流方程组的构建方法以及高效的迭代求解算法。

  • 动态潮流计算:

     介绍了基于 UEFT 的动态潮流方程组的构建方法以及数值积分求解方法。

  • IES 案例分析:

     结合具体的 IES 案例,详细阐述了 UEFT 在稳态与动态潮流计算中的应用。

该书的出版为 IES 分析提供了一种新的理论框架和技术手段,有助于推动 IES 的研究和应用。

UEFT 的挑战与未来展望

尽管 UEFT 在 IES 分析中具有诸多优势,但仍然面临一些挑战。例如,UEFT 的建模复杂度较高,需要准确描述不同能源系统的物理特性和动态响应。此外,UEFT 的求解算法也需要不断改进,以提高求解效率和稳定性。

未来,UEFT 的发展方向主要包括:

  • 简化建模:

     探索更加简洁和高效的建模方法,降低 UEFT 的建模复杂度。

  • 优化算法:

     进一步优化 UEFT 的求解算法,提高求解效率和稳定性。

  • 考虑不确定性:

     将不确定性因素(例如可再生能源出力波动、负荷需求变化等)纳入 UEFT 的分析框架中,提高 IES 的可靠性和鲁棒性。

  • 应用于实际工程:

     将 UEFT 应用于实际的 IES 工程项目中,验证其有效性和实用性。

结论

统一能路理论为综合能源系统分析提供了一种极具潜力的框架。通过统一的能量视角和数学模型,UEFT 简化了 IES 的建模和分析过程,提高了计算效率和准确性。在稳态与动态潮流计算方面,UEFT 的应用能够更好地理解和预测 IES 的运行特性,为 IES 的规划、设计和运行提供重要的技术支持。《综合能源系统分析的统一能路理论(三):稳态与动态潮流计算》一书为研究人员和工程师提供了一套系统的理论和方法,有助于推动 UEFT 在 IES 领域的应用和发展。尽管 UEFT 仍面临一些挑战,但随着技术的不断进步和应用领域的不断拓展,相信 UEFT 将在未来的 IES 分析中发挥越来越重要的作用,为构建安全、可靠、高效和环保的能源系统做出贡献。

⛳️ 运行结果

🔗 参考文献

[1] 陈彬彬,孙宏斌,吴文传,等.综合能源系统分析的统一能路理论(三): 稳态与动态潮流计算[J].中国电机工程学报, 2020, 40(15):11.DOI:10.13334/j.0258-8013.pcsee.200647.

[2] 贾树森.交直流系统稳态低频减载优化算法和暂态低压减载控制策略研究[D].合肥工业大学,2012.DOI:10.7666/d.Y2178522.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值