【核磁共振T1映射】基于NLLS的新型算法从 SPGR 信号准确精确估计高分辨率的T1加权图像研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

磁共振成像(MRI)凭借其非侵入性、无电离辐射以及出色的软组织对比度,已成为现代医学诊断中不可或缺的工具。T1加权图像作为MRI成像的重要组成部分,在肿瘤检测、神经退行性疾病评估以及肌肉骨骼系统成像等方面发挥着关键作用。然而,传统的T1加权图像仅提供定性的信息,无法进行精确的组织定量分析。T1映射技术通过量化组织或病变的T1弛豫时间,为MRI提供了更客观、更可靠的诊断依据。因此,发展更精确、更快速的T1映射算法,对于提高临床诊断水平具有重要意义。本研究旨在探讨一种基于非线性最小二乘法(NLLS)的新型算法,用于从扰相梯度回波(SPGR)信号中准确且精确地估计高分辨率的T1加权图像,并对该算法的性能进行评估。

背景与挑战

T1映射是一种利用一系列具有不同采集参数(如反转时间、重复时间或翻转角)的MRI图像来计算每个像素点T1弛豫时间的技术。目前,T1映射方法主要包括反转恢复法(Inversion Recovery, IR)、饱和恢复法(Saturation Recovery, SR)和变翻转角法(Variable Flip Angle, VFA)等。其中,SPGR序列结合VFA方法,因其采集速度快、信噪比高,且能够产生高分辨率图像的潜力,在临床应用中具有广泛的应用前景。

然而,基于SPGR序列的T1映射仍然面临着一些挑战:

  • B1场不均匀性:

     实际扫描过程中,射频(RF)脉冲的强度可能并非均匀分布,尤其是在高场强MRI系统中,B1场的不均匀性会导致翻转角偏离预期值,从而影响T1估计的准确性。

  • 噪声影响:

     MRI图像受到各种噪声的影响,包括系统噪声、热噪声以及患者自身的运动伪影等。噪声的存在会降低T1估计的精度,尤其是在低信噪比区域。

  • 模型简化带来的误差:

     传统的T1映射算法通常会简化信号模型,例如忽略自旋激励历史的影响,或者假设完全激励。这些简化会引入误差,尤其是在使用快速成像序列时。

  • 计算复杂度:

     传统的T1映射算法,如像素级的线性回归,在处理高分辨率图像时,计算量巨大,耗时较长,难以满足临床对实时性的要求。

新型基于NLLS的算法

为了克服上述挑战,本研究提出了一种基于NLLS的新型算法,用于从SPGR信号中准确且精确地估计高分辨率的T1加权图像。该算法的核心思想是:

  1. 建立精确的SPGR信号模型:

     该模型不仅考虑了T1弛豫和T2*弛豫的影响,还考虑了B1场不均匀性、噪声以及自旋激励历史的影响,从而更加真实地反映了SPGR信号的产生过程。

  2. 采用NLLS进行参数估计:

     NLLS是一种强大的非线性优化方法,能够找到模型参数的最佳估计值,即使在存在噪声和模型误差的情况下。该算法通过迭代的方式,不断调整T1、T2*和B1场等参数,使得计算得到的SPGR信号与实际采集到的SPGR信号之间的差异最小化。

  3. 引入正则化约束:

     为了提高T1估计的稳定性,并减少噪声的影响,该算法引入了正则化约束。正则化约束可以抑制T1值的过度变化,并保持T1映射图像的平滑性。常用的正则化方法包括Tikhonov正则化(L2正则化)和Total Variation(TV)正则化。

  4. 优化算法效率:

     为了提高算法的计算效率,该算法采用了多种优化策略,例如使用并行计算、预计算某些中间变量以及采用高效的优化算法(如Levenberg-Marquardt算法)。

研究方法

为了评估新型NLLS算法的性能,本研究采用了以下方法:

  • 仿真数据:

     利用数值仿真方法,生成不同T1和T2*值的仿真数据,并模拟B1场不均匀性和噪声的影响。通过比较新型NLLS算法与传统算法在仿真数据上的表现,评估算法的准确性和鲁棒性。

  • 体模实验:

     使用具有已知T1和T2*值的体模进行实验。利用SPGR序列采集不同翻转角的MRI图像,并使用新型NLLS算法和传统算法进行T1映射。通过比较两种算法的T1估计结果与体模的已知值,评估算法的准确性和可靠性。

  • 临床实验:

     在人体受试者上进行实验。利用SPGR序列采集不同翻转角的MRI图像,并使用新型NLLS算法和传统算法进行T1映射。通过比较两种算法得到的T1映射图像的质量、T1值的分布以及诊断价值,评估算法的临床应用潜力。

预期结果

本研究预期结果如下:

  • 精度提升:

     新型NLLS算法能够显著提高T1估计的精度,尤其是在存在B1场不均匀性和噪声的情况下。

  • 鲁棒性增强:

     新型NLLS算法具有更强的鲁棒性,能够有效地抑制噪声的影响,并对模型误差具有一定的容忍度。

  • 图像质量改善:

     新型NLLS算法能够产生更高质量的T1映射图像,图像具有更高的信噪比、更少的伪影以及更好的边缘清晰度。

  • 计算效率提高:

     新型NLLS算法能够显著提高计算效率,并实现T1映射的实时性。

  • 临床应用价值:

     新型NLLS算法能够为临床诊断提供更客观、更可靠的依据,并提高诊断的准确性和效率。

结论

本研究旨在开发一种基于NLLS的新型算法,用于从SPGR信号中准确且精确地估计高分辨率的T1加权图像。该算法通过建立精确的SPGR信号模型、采用NLLS进行参数估计、引入正则化约束以及优化算法效率等措施,有望克服传统T1映射算法的局限性,并显著提高T1估计的精度、鲁棒性和计算效率。本研究的预期结果将为MRI T1映射技术的发展提供新的思路和方法,并为临床诊断提供更客观、更可靠的依据。

未来展望

未来,可以进一步研究以下方面:

  • 深度学习的应用:

     利用深度学习技术,可以学习SPGR信号与T1值之间的非线性关系,从而进一步提高T1估计的精度和效率。

  • 多参数联合估计:

     将T1、T2*和B1场等参数进行联合估计,可以提高参数估计的准确性和一致性。

  • 运动校正:

     开发运动校正算法,可以减少患者运动对T1映射的影响。

  • 临床应用拓展:

     将新型T1映射算法应用于更多临床疾病的诊断,例如肿瘤、神经退行性疾病和心血管疾病等。

⛳️ 运行结果

🔗 参考文献

[1] 张鉥缨.BOLD功能磁共振成像在癫痫患者语言、记忆功能区及其抗癫痫药物影响作用的研究[D].四川大学,2007.DOI:10.7666/d.y1193892.

[2] 中國醫藥大學:中國醫學研究所博士班.中醫經絡基礎及其臨床應用之研究-以針刺原穴腦功能圖譜暨太極拳功效為例;Basics and Clinical Applications of the Meridian–Studies on Functional Brain Mappings of Foot-3-Yang Yuan Acupoints and Taichi Training Effects[J]. 2008.DOI:http://140.128.69.115:8080/ir/handle/310903500/372.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值