【空间矢量PWM】参考电压矢量转换成dq旋转相位研究附Simulink代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

空间矢量脉宽调制(SVPWM)作为一种先进的变频调速控制技术,以其优异的谐波性能和直流电压利用率,在电力传动领域得到广泛应用。本文深入研究SVPWM技术中参考电压矢量到dq旋转相位转换的关键环节。首先,阐述了SVPWM的基本原理,强调了参考电压矢量的生成与作用。其次,详细分析了将参考电压矢量从αβ静止坐标系转换到dq旋转坐标系的数学推导过程,包括Clark变换和Park变换的应用。进一步,探讨了在dq旋转坐标系下进行PWM调制策略的优点,以及如何控制dq轴电压分量来实现对电机的精准控制。最后,对研究成果进行了总结,并展望了SVPWM技术在未来发展中的应用前景。

关键词: 空间矢量脉宽调制 (SVPWM), dq旋转坐标系, Clark变换, Park变换, 电压矢量, 电机控制

1. 引言

随着电力电子技术和微电子技术的飞速发展,变频调速技术在工业控制、新能源发电、轨道交通等领域扮演着越来越重要的角色。空间矢量脉宽调制 (SVPWM) 作为一种先进的变频调速控制技术,相较于传统的载波脉宽调制 (CPWM) 具有更高的直流电压利用率、更低的谐波失真以及更灵活的调制策略,因而备受青睐。

SVPWM 的核心思想是将三相交流电机的控制转化为对电压空间矢量的控制。通过合理地选择和组合开关状态,合成一个等效的电压空间矢量来逼近理想的参考电压矢量。为了实现更加精确和高效的电机控制,通常需要将参考电压矢量从αβ静止坐标系转换到dq旋转坐标系。在dq旋转坐标系下,交流信号被转换为直流信号,便于控制算法的实现和优化。

本文旨在深入探讨 SVPWM 技术中参考电压矢量到dq旋转相位转换的关键环节,详细阐述其理论基础、数学推导过程以及在电机控制中的应用。

2. SVPWM 基本原理

SVPWM 的基本原理可以概括为以下几个步骤:

  • 参考电压矢量的生成:

     根据控制目标,计算得到理想的参考电压矢量,通常用αβ坐标系表示。

  • 扇区判断:

     将αβ坐标系划分为六个扇区,确定参考电压矢量所处的扇区。

  • 基矢量选择:

     在所处扇区内选择相邻的两个有效电压矢量和一个零电压矢量作为基矢量。

  • 作用时间计算:

     根据电压矢量合成原理,计算每个基矢量的作用时间。

  • 开关时序生成:

     根据计算出的作用时间,按照一定的规则生成开关信号,驱动逆变器工作。

SVPWM 的核心在于如何合理地生成开关时序,以使合成的电压矢量尽可能地逼近理想的参考电压矢量。通过调整开关时序,可以实现对电机的速度、转矩等参数的精确控制。

3. 参考电压矢量到dq旋转相位转换

将参考电压矢量从αβ静止坐标系转换到dq旋转坐标系的目的是为了将交流信号转换为直流信号,从而简化控制算法的实现,并提高控制精度。该转换过程主要包括 Clark 变换和 Park 变换两个步骤。

3.1 Clark 变换

Clark 变换是将三相静止坐标系 (abc) 转换为两相静止坐标系 (αβ) 的过程。

3.2 Park 变换

Park 变换是将两相静止坐标系 (αβ) 转换为两相旋转坐标系 (dq) 的过程。

Park 变换的目的是将两相交流信号转换为两相直流信号。在dq旋转坐标系下,Vd 和 Vq 分别代表直轴电压和交轴电压。通过控制 Vd 和 Vq,可以实现对电机的磁链和转矩的独立控制。

3.3 坐标系转换的物理意义

  • αβ坐标系:

     αβ坐标系是一个静止的坐标系,用于表示电压或电流的空间矢量。它将三相交流信号分解为两个正交的交流信号,便于进行矢量控制。

  • dq坐标系:

     dq坐标系是一个与转子同步旋转的坐标系,也称为同步旋转坐标系。在dq坐标系下,交流信号被转换为直流信号,便于进行控制算法的设计和实现。通过控制 dq 轴电压分量,可以实现对电机的磁链和转矩的独立控制,从而提高控制性能。

4. dq旋转坐标系下的PWM调制策略

在dq旋转坐标系下进行PWM调制策略具有以下优点:

  • 简化控制算法:

     由于dq轴电压分量是直流信号,因此可以采用传统的直流控制方法进行控制,例如PID控制等。

  • 提高控制精度:

     由于dq轴电压分量与电机的磁链和转矩直接相关,因此可以通过控制 dq 轴电压分量来实现对电机的精确控制。

  • 实现解耦控制:

     通过控制 dq 轴电压分量,可以实现对电机的磁链和转矩的独立控制,从而提高控制性能。

在dq旋转坐标系下,通常采用电流环和速度环双环控制结构。电流环控制 dq 轴电流,速度环控制电机的转速。通过控制 dq 轴电流,可以间接控制 dq 轴电压,从而实现对电机的速度和转矩的精确控制。

5. 结论与展望

本文深入研究了 SVPWM 技术中参考电压矢量到dq旋转相位转换的关键环节。通过对 Clark 变换和 Park 变换的详细分析,阐述了将参考电压矢量从αβ静止坐标系转换到dq旋转坐标系的数学推导过程。此外,还探讨了在dq旋转坐标系下进行PWM调制策略的优点,以及如何控制dq轴电压分量来实现对电机的精准控制。

SVPWM 作为一种先进的变频调速控制技术,在电力传动领域具有广阔的应用前景。随着电力电子技术和微电子技术的不断发展,SVPWM 技术将朝着更加智能化、高效化、可靠化的方向发展。未来的研究方向包括:

  • 优化PWM调制策略:

     研究更加先进的PWM调制策略,以降低谐波失真,提高直流电压利用率。

  • 提高控制精度:

     采用更加先进的控制算法,例如模型预测控制 (MPC),以提高电机控制的精度和响应速度。

  • 适应复杂工况:

     研究在复杂工况下,例如高频开关、非线性负载等,SVPWM 技术的应用。

  • 应用于新型电机:

     将 SVPWM 技术应用于新型电机,例如永磁同步电机 (PMSM)、开关磁阻电机 (SRM) 等,以提高电机的性能。

⛳️ 运行结果

🔗 参考文献

[1] 李松磊.三相电压型SVPWM整流器的研究与设计[D].山东大学,2015.DOI:10.7666/d.Y2794464.

[2] 吴汪兵.一种新型带串联变压器的混合有源滤波器研究[D].华中科技大学[2025-04-03].DOI:10.7666/d.d085363.

[3] 徐立尉,曾岳南,陈林康.电压空间矢量PWM技术分析及其计算机仿真[J].计算机仿真, 2007, 24(3):4.DOI:10.3969/j.issn.1006-9348.2007.03.081.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

内容概要:本文介绍了流量整形(Traffic Shaping)与增强传输选择(Enhanced Transmission Selection, ETS)技术在多虚拟函数(VFs)共享单个物理网络接口控制器(NIC)端口情况下的应用。流量整形通过对数据发送速率进行限制来管理网络流量,确保节点不会超过设定的最大带宽,同时保证最小带宽。ETS是IEEE 802.1Qaz标准的一部分,旨在数据中心桥接环境中为不同类型的流量分配带宽。文章详细描述了在多VF组中实现每类流量带宽保证的技术挑战和解决方案,包括使用令牌桶算法、加权循环调度(DWRR)、多队列优先级(MQPRIO)以及信任模式(Trust Mode)进行流量分类。此外,还探讨了如何通过扩展devlink-rate工具指定每个流量类别的带宽比例。 适合人群:网络工程师、系统管理员、云服务提供商以及对网络流量管理和优化感兴趣的IT专业人员。 使用场景及目标:①理解流量整形的基本概念及其在网络通信中的作用;②掌握如何配置虚拟功能(VF)以实现对特定流量类别的带宽控制;③学习如何利用ETS机制确保关键业务获得足够的网络资源;④了解最新的devlink-rate扩展功能及其在实际部署中的应用。 其他说明:本文基于Netdev 0x19会议上的演讲整理而成,提供了从背景介绍到具体实施步骤的全面讲解,并有详细的参考资料链接供进一步研究
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值