✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着无人机技术的飞速发展,其应用领域日益广泛,从侦察监控到物流运输,从灾害救援到娱乐航拍。然而,在复杂多变的环境中实现无人机的稳定、敏捷、高效飞行,仍然面临诸多挑战。传统的无人机控制方法往往依赖于精确的系统模型,但在实际应用中,模型的精度难以保证,且对外部干扰和系统内部变化鲁棒性较差。受到自然界中四足动物在复杂地形中表现出的卓越运动能力的启发,本文提出了一种基于四足动物动态运动的无表征模型预测控制(Non-parametric Model Predictive Control based on Quadruped Locomotion Dynamics, NMPCLD)框架,用于提升无人机的飞行控制性能。该方法摒弃了对无人机显式动力学模型的依赖,而是通过学习四足动物在地面运动时产生的丰富且具有鲁棒性的动态特性,并将其迁移到无人机的三维空间飞行控制中。通过将地面四足动物的动态运动模式抽象为一系列时变关节力/力矩指令,再将其转化为无人机推力和姿态指令,实现一种新型的无模型预测控制。这种方法旨在增强无人机对未知环境扰动和系统参数变化的适应性,提升其在复杂环境下的飞行稳定性和机动性。本文将深入探讨该方法的理论基础、技术实现以及潜在的应用前景。
引言
无人机作为一种极具潜力的自主飞行平台,其飞行控制技术的进步是实现其广泛应用的关键。传统的无人机飞行控制策略,例如PID控制、线性二次调节(LQR)、反馈线性化等,通常基于对无人机动力学模型的精确建模。这些模型通常通过牛顿-欧拉方程或拉格朗日方程建立,然后利用这些模型进行控制律的设计和优化。然而,无人机在实际飞行中会面临各种不确定性,包括风扰、载荷变化、电池衰减等,这些因素会导致实际动力学与模型预测之间存在差异,从而影响控制性能。此外,对于某些复杂或未知的无人机平台,建立精确的动力学模型本身就是一项艰巨的任务。
近年来,随着机器学习和深度学习技术的快速发展,基于学习的控制方法在无人机领域也得到了广泛关注。这些方法试图通过从数据中学习控制策略,以规避对显式模型的依赖。例如,强化学习(Reinforcement Learning, RL)已经被用于无人机的姿态控制、路径规划和避障等方面。虽然强化学习在某些任务上取得了显著成果,但其训练过程往往需要大量的尝试和错误,且训练效率不高,同时对于安全关键的飞行任务,探索带来的风险也需要仔细考量。
与此同时,自然界中的生物运动为工程领域提供了丰富的灵感。四足动物,如犬、猫、豹等,能够在崎岖不平的地形上快速、稳定、灵活地奔跑、跳跃、转向。这种卓越的运动能力并非完全依赖于对其身体和环境的精确建模,而是通过高度协同的神经肌肉控制系统和对感知信息的快速响应来实现。这些动物通过感知地面反作用力、肌肉张力、关节角度等信息,实时调整其步态和姿态,以应对复杂的环境变化。这种基于感知的、动态的控制策略为无人机的飞行控制提供了新的思路。
本文提出一种基于四足动物动态运动的无表征模型预测控制框架,旨在将四足动物在地面运动中展现出的鲁棒性和适应性迁移到无人机的三维空间飞行控制中。这种方法的核心思想在于,将四足动物的运动模式抽象为一种能够产生稳定、动态行为的“通用控制器”,然后将这种控制策略应用于无人机的飞行控制。这里的“无表征”指的是,我们不试图建立一个显式的、可解释的无人机动力学模型,而是通过学习四足动物的运动数据,构建一个能够预测未来运动趋势并产生相应控制指令的隐式模型或策略。
二、四足动物动态运动的抽象与建模
四足动物的地面运动是一种复杂的高度非线性系统。其卓越的运动能力源于对多关节、多腿协调运动的精确控制以及对地面反作用力的巧妙利用。为了将这种复杂的地面运动模式迁移到无人机的飞行控制中,我们需要对其进行适当的抽象和建模。
一种可能的抽象方式是将四足动物的运动视为一系列时变关节力或力矩指令的序列,这些指令在一定程度上决定了其身体的运动状态。例如,在奔跑过程中,四足动物会通过控制腿部肌肉的收缩和舒张,产生周期性的摆动和支撑运动,从而驱动身体向前运动。这种关节力/力矩指令序列可以被视为一种低维的控制信号,通过与身体的动力学相互作用,产生高维的运动轨迹。
另一种抽象方式是从地面反作用力的角度出发。四足动物通过调整其腿部与地面的接触方式和力学特性,产生合适的地面反作用力,以支撑身体、克服重力并产生推进力。这种地面反作用力的模式,例如其大小、方向和作用点,在很大程度上决定了四足动物的运动稳定性。
在本文提出的NMPCLD框架中,我们将四足动物的动态运动抽象为一种能够产生期望身体运动和姿态的“虚拟”控制器。这种控制器并非基于对无人机显式动力学模型的理解,而是通过学习四足动物的运动数据来建立。具体来说,我们可以采集四足动物在不同地形、不同速度下的运动数据,包括关节角度、力矩、身体姿态、地面反作用力等。这些数据可以用于训练一个神经网络或其他机器学习模型,该模型能够根据当前的身体状态和期望的运动目标,预测未来一段时间内的“虚拟”控制指令,这些指令可以被解释为能够产生类似四足动物运动特性的抽象信号。
这种“虚拟”控制指令的“无表征”体现在,我们不明确地将其与无人机的物理量(如推力、力矩)建立一一对应的关系。相反,我们将其视为一种潜在的控制信号,能够驱动一个隐式的动力学系统(由学习模型表示)产生期望的运动行为。
三、无表征模型预测控制框架设计
基于四足动物动态运动的无表征模型预测控制框架可以被描述为一个模型预测控制(MPC)问题,但其核心模型是基于四足动物运动学习得到的“无表征”模型。该框架的主要组成部分包括:
-
状态估计模块: 该模块负责实时获取无人机的当前状态,包括位置、姿态、线速度、角速度等。这些状态信息可以通过机载传感器(如惯性测量单元、GPS、视觉传感器)获取,并通过滤波算法进行融合和估计。
-
期望轨迹生成模块: 该模块根据用户指令或高级任务规划,生成无人机的期望运动轨迹,包括期望位置、姿态、速度等。这条轨迹可以是一条连续的路径,也可以是一系列离散的航点。
-
无表征模型: 这是NMPCLD框架的核心。该模型是通过学习四足动物运动数据构建的。它接收无人机的当前状态以及期望的运动目标,输出未来一段时间内的一系列“虚拟”控制指令。该模型可以是神经网络、高斯过程回归或其他适用于序列建模的机器学习模型。模型的训练数据来自四足动物在各种运动状态下的观测数据。通过学习,模型能够捕捉四足动物运动的内在动态特性和控制策略。
-
控制指令转换模块: 该模块负责将“无表征”模型输出的“虚拟”控制指令转换为无人机可以执行的物理控制指令,即电机的推力和扭矩指令。由于“虚拟”控制指令与无人机的物理量之间没有显式的映射关系,这一转换过程需要通过优化或另一个学习模型来实现。例如,我们可以训练另一个神经网络,将“虚拟”控制指令作为输入,无人机的推力和扭矩作为输出,通过在仿真环境中或实际无人机上进行实验来训练该模型,使其能够产生能够实现期望运动的物理控制指令。
-
优化求解器: MPC的核心是解决一个在线优化问题。在NMPCLD框架中,优化问题的目标是在未来一段时间内,最小化无人机的实际轨迹与期望轨迹之间的偏差,同时考虑到控制指令的约束和稳定性。
四、技术实现与关键挑战
实现基于四足动物动态运动的无表征模型预测控制,需要解决以下关键技术挑战:
-
四足动物运动数据的采集与处理: 获取高质量的四足动物运动数据是构建无表征模型的基础。这需要利用高精度运动捕捉系统、力传感器等设备,同时需要处理数据中的噪声和缺失值。针对不同种类、不同体型的四足动物,以及不同运动状态(行走、奔跑、跳跃)的数据采集和处理方式也会有所不同。
-
无表征模型的选择与训练: 选择合适的机器学习模型来表示四足动物的动态特性至关重要。循环神经网络(RNN)、长短期记忆网络(LSTM)、Transformer等模型在处理序列数据方面具有优势,可以用来建模四足动物运动的时序特性。模型的训练需要大量的运动数据,并且需要设计合适的训练目标和损失函数,以捕捉四足动物运动的鲁棒性和适应性。此外,如何有效地将四足动物的运动数据转化为无人机控制所需的“虚拟”指令,也是一个需要解决的问题。
-
控制指令转换模块的设计与训练: 将“虚拟”控制指令转换为无人机物理控制指令是一个非平凡的问题。一种方法是利用另一个神经网络进行学习,将“虚拟”指令作为输入,无人机的推力和扭矩作为输出。训练数据可以通过在仿真环境中或实际无人机上进行随机探索或基于专家的演示来获取。另一种方法是将转换过程融入到优化问题中,将“虚拟”指令和物理指令都作为优化变量,通过约束或惩罚项来建立它们之间的关联。
-
在线优化求解的效率与鲁棒性: MPC需要在每个控制周期内解决一个优化问题。对于高维度的状态和控制空间,以及非显式的模型,在线优化求解的效率和鲁棒性是巨大的挑战。需要采用高效的优化算法,例如序列二次规划(SQP)、内点法、或者基于学习的优化方法。此外,如何在优化过程中处理不确定性和外部扰动,也是需要深入研究的问题。
-
跨域迁移的挑战: 将四足动物在地面上的运动特性迁移到无人机在三维空间中的飞行,面临着巨大的跨域挑战。地面运动主要受地面反作用力和重力影响,而无人机飞行则依赖于推力和空气动力。如何在不同的物理系统中建立有效的映射关系,是该框架成功的关键。这可能需要引入领域适应(Domain Adaptation)技术,或者通过设计具有通用性的“虚拟”控制指令来桥接不同物理系统之间的差异。
-
安全性和可解释性: 基于学习的控制方法往往缺乏可解释性,这对于安全关键的无人机飞行任务是一个潜在的风险。虽然无表征模型不依赖于显式模型,但我们仍然需要确保控制策略的安全性,避免产生危险的飞行行为。未来的研究可以探索如何结合传统模型和学习方法,或者设计具有一定可解释性的学习模型,以提高控制系统的安全性。
五、潜在应用前景
基于四足动物动态运动的无表征模型预测控制框架在无人机领域具有广阔的应用前景:
-
复杂环境下的飞行: 该框架有望提升无人机在复杂环境中的飞行能力,例如在有风扰、地形复杂、或有未知障碍物的环境中。四足动物在复杂地面环境中的鲁棒运动能力可以为无人机在类似复杂空间环境中的飞行提供借鉴。
-
高机动性飞行: 四足动物在奔跑、跳跃、转向等高动态运动方面表现出色。将这些动态特性迁移到无人机,可以实现更加敏捷和灵活的飞行,例如快速躲避障碍物、进行高难度特技飞行等。
-
未知无人机平台的控制: 对于缺乏精确动力学模型的未知或新型无人机平台,传统的基于模型的控制方法难以应用。基于学习的无表征控制方法可以通过少量的数据学习其动态特性,从而实现有效的控制。
-
对载荷变化的适应性: 无人机在执行任务时可能携带不同载荷,导致其动力学特性发生变化。传统的基于固定模型的控制方法对载荷变化鲁棒性较差。基于学习的无表征控制方法可以更好地适应载荷变化,因为学习模型能够捕捉不同载荷下的动态行为。
六、结论
本文提出了一种基于四足动物动态运动的无表征模型预测控制框架,旨在将四足动物在复杂环境中表现出的卓越运动能力迁移到无人机的飞行控制中。该框架的核心思想在于,通过学习四足动物的运动数据构建一个能够产生鲁棒、动态飞行行为的“无表征”模型,并将其应用于模型预测控制。这种方法有望克服传统基于模型的控制方法对精确模型和外部扰动敏感的缺点,提升无人机在复杂环境下的飞行稳定性和机动性。
然而,实现该框架仍然面临诸多技术挑战,包括四足动物运动数据的获取与处理、无表征模型的选择与训练、控制指令转换的设计与实现、以及在线优化求解的效率与鲁棒性等。未来的研究需要深入探索这些问题,并结合理论分析和实验验证,逐步完善该框架。
尽管存在挑战,基于四足动物动态运动的无表征模型预测控制为无人机飞行控制提供了新的视角和思路。通过借鉴自然界中生物的智慧,我们有望开发出更加智能、鲁棒、自适应的无人机控制系统,为无人机的广泛应用奠定坚实基础。随着技术的不断发展,我们相信这种新型的控制方法将在未来无人机领域发挥重要作用。
⛳️ 运行结果
🔗 参考文献
[1] 杨仕云.飞行员动态空间表征建构的实验研究[D].陕西师范大学,2009.
[2] 徐志华,杨旭,孙钱程,等.基于多变量自优化动态神经网络的"阶跃型"滑坡变形预测[J].金属矿山, 2024(3):74-82.
[3] 米璐.集中供热系统室内温度分布式模型预测控制[D].西安建筑科技大学,2023.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇