# [BZOJ]3301 [USACO2011 Feb] Cow Line 康托展开&逆康托展开

## 3301: [USACO2011 Feb] Cow Line

Time Limit: 10 Sec   Memory Limit: 128 MB
Submit: 215   Solved: 108
[ Submit][ Status][ Discuss]

## Description

The N (1 <= N <= 20) cows conveniently numbered 1...N are playing
yet another one of their crazy games with Farmer John. The cows
will arrange themselves in a line and ask Farmer John what their
line number is. In return, Farmer John can give them a line number
and the cows must rearrange themselves into that line.
A line number is assigned by numbering all the permutations of the
line in lexicographic order.

Consider this example:
Farmer John has 5 cows and gives them the line number of 3.
The permutations of the line in ascending lexicographic order:
1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
Therefore, the cows will line themselves in the cow line 1 2 4 3 5.

The cows, in return, line themselves in the configuration "1 2 5 3 4" and
ask Farmer John what their line number is.

Continuing with the list:
4th : 1 2 4 5 3
5th : 1 2 5 3 4
Farmer John can see the answer here is 5

Farmer John and the cows would like your help to play their game.
They have K (1 <= K <= 10,000) queries that they need help with.
Query i has two parts: C_i will be the command, which is either 'P'
or 'Q'.

If C_i is 'P', then the second part of the query will be one integer
A_i (1 <= A_i <= N!), which is a line number. This is Farmer John
challenging the cows to line up in the correct cow line.

If C_i is 'Q', then the second part of the query will be N distinct
integers B_ij (1 <= B_ij <= N). This will denote a cow line. These are the
cows challenging Farmer John to find their line number.

1st: 1 2 3 4 5
2nd: 1 2 3 5 4
3rd: 1 2 4 3 5
4th : 1 2 4 5 3
5th : 1 2 5 3 4
……

## Input

* Line 1: Two space-separated integers: N and K
* Lines 2..2*K+1: Line 2*i and 2*i+1 will contain a single query.
Line 2*i will contain just one character: 'Q' if the cows are lining
up and asking Farmer John for their line number or 'P' if Farmer
John gives the cows a line number.

If the line 2*i is 'Q', then line 2*i+1 will contain N space-separated
integers B_ij which represent the cow line. If the line 2*i is 'P',
then line 2*i+1 will contain a single integer A_i which is the line
number to solve for.

## Output

* Lines 1..K: Line i will contain the answer to query i.

If line 2*i of the input was 'Q', then this line will contain a
single integer, which is the line number of the cow line in line
2*i+1.

If line 2*i of the input was 'P', then this line will contain N
space separated integers giving the cow line of the number in line
2*i+1.

5 2
P
3
Q
1 2 5 3 4

1 2 4 3 5
5

## Source

[ Submit][ Status][ Discuss]
﻿

今天学习了一发康托展开， 很简单也很精妙， 用一种变进制的思想恰好对应了排列， 而且还可以倒推回来...

这道题就是裸的康托展开啦.

#include<bits/stdc++.h>
#define clear(a) memset(a, 0, sizeof(a))
using namespace std;
char ss[2];
int n, K;
long long rank, pw[22];
int id[22], a[22], vis[22];
inline void ExCantor() {
long long ans = 0;
for (int i = 1; i <= n; ++ i)
scanf("%d", &a[i]);
for (int i = 1; i <= n; ++ i) {
int cnt = 0;
for (int j = i + 1; j <= n; ++ j)
if (a[j] < a[i]) cnt ++;
ans += cnt * pw[n - i];
}
printf("%lld\n", ++ ans);
}
inline void IExcantor() {
clear(vis);
scanf("%lld", &rank);
rank --;
for (int i = 1; i <= n; ++ i) {
int t = rank / pw[n - i];
rank %= pw[n - i];
for (int j = 1; j <= n; ++ j)
if (!vis[j]) {
if (!t) {id[i] = j; vis[j] = true; break;}
t --;
}
}
for (int i = 1; i < n; ++ i)
printf("%d ", id[i]);
printf("%d\n", id[n]);
}
int main() {
scanf("%d%d", &n, &K);
pw[0] = 1;
for (int i = 1; i <= n; ++ i) pw[i] = pw[i - 1] * i;
for (int i = 1; i <= K; ++ i) {
scanf("%s", ss);
if (ss[0] == 'P') IExcantor();
else ExCantor();
}
}

10-15 24

12-18 92
08-16 30
10-31 28
09-06 22
09-23 157
04-19
09-28
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客