康拓展开:
已知序列a1, a2, a3, …, an是1~n的一个排列,求这是1~n全排列中,第几小的排列?
ans = ,其中F(i)表示后面n-i个数中比当前小的数的个数
例如 n = 5,序列 1 2 5 3 4,那么有公式 ans = 1+0+0+2*2!+0+0 = 5
逆康拓展开:
顾名思义,就是反过来求,对于当前n和k,求出1~n全排列中,第k小的排列
例如 n = 5,k = 61,具体过程如下:
①计算 k/(n-1)!,即 61/4! = 2,说明比首位小的数字有2个,a1 = 3,k' = k%(n-1)! = 13
②继续计算 k/(n-2)!,即13/3! = 2余1,说明剩下的数中比第二位小的数字有2个,a2 = 4,k' = 1
③以此类推,1/2! = 0余1,a3 = 1,k' = 1
④1/1! = 1,说明剩下的数(只剩下2和5)中比第4位小的有1个,那么第4位a4当然等于5
⑤最后一个数只能等于2
答案就是34152
例题:http://www.lydsy.com/JudgeOnline/problem.php?id=3301
题面太太太长了就不放了,输入规则如下:
第一行两个数n和q,接下来q行每行先输入一个字符'P'或'Q'
如果是'P',输入一个数字k求出1~n全排列中,第k小的排列
如果是'Q',输入n个数字,求出这个序列是第几小的排列
#include<stdio.h>
#include<string.h>
#define LL long long
LL ans[22], jc[22] = {1};
int flag[22];
int main(void)
{
char ch;
LL x, k, now;
int n, q, i, j;
for(i=1;i<=20;i++)
jc[i] = jc[i-1]*i;
scanf("%d%d", &n, &q);
while(q--)
{
scanf(" %c", &ch);
memset(flag, 0, sizeof(flag));
if(ch=='P')
{
scanf("%lld", &k);
k -= 1;
for(i=1;i<=n-1;i++)
{
x = k/jc[n-i];
k = k%jc[n-i];
for(j=1;j<=n;j++)
{
if(flag[j]==0)
x--;
if(x==-1)
{
flag[j] = 1;
break;
}
}
ans[i] = j;
}
for(i=1;i<=n-1;i++)
printf("%lld ", ans[i]);
for(j=1;j<=n;j++)
{
if(!flag[j])
break;
}
printf("%d\n", j);
}
else
{
for(i=1;i<=n;i++)
scanf("%lld", &ans[i]);
now = 1;
for(i=1;i<=n;i++)
{
x = 0;
for(j=1;j<=n;j++)
{
if(flag[j]==0 && j<ans[i])
x++;
}
flag[ans[i]] = 1;
now += x*jc[n-i];
}
printf("%lld\n", now);
}
}
return 0;
}