康托展开与逆康托展开(bzoj 3301: [USACO2011 Feb] Cow Line)

康拓展开:

已知序列a1, a2, a3, …, an是1~n的一个排列,求这是1~n全排列中,第几小的排列?

ans = ,其中F(i)表示后面n-i个数中比当前小的数的个数

例如 n = 5,序列 1 2 5 3 4,那么有公式 ans = 1+0+0+2*2!+0+0 = 5


逆康拓展开:

顾名思义,就是反过来求,对于当前n和k,求出1~n全排列中,第k小的排列

例如 n = 5,k = 61,具体过程如下:

①计算 k/(n-1)!,即 61/4! = 2,说明比首位小的数字有2个,a1 = 3,k' = k%(n-1)! = 13

②继续计算 k/(n-2)!,即13/3! = 2余1,说明剩下的数中比第二位小的数字有2个,a2 = 4,k' = 1

③以此类推,1/2! = 0余1,a3 = 1,k' = 1

④1/1! = 1,说明剩下的数(只剩下2和5)中比第4位小的有1个,那么第4位a4当然等于5

⑤最后一个数只能等于2

答案就是34152


例题:http://www.lydsy.com/JudgeOnline/problem.php?id=3301

题面太太太长了就不放了,输入规则如下:

第一行两个数n和q,接下来q行每行先输入一个字符'P'或'Q'

如果是'P',输入一个数字k求出1~n全排列中,第k小的排列

如果是'Q',输入n个数字,求出这个序列是第几小的排列


#include<stdio.h>
#include<string.h>
#define LL long long
LL ans[22], jc[22] = {1};
int flag[22];
int main(void)
{
	char ch;
	LL x, k, now;
	int n, q, i, j;
	for(i=1;i<=20;i++)
		jc[i] = jc[i-1]*i;
	scanf("%d%d", &n, &q);
	while(q--)
	{
		scanf(" %c", &ch);
		memset(flag, 0, sizeof(flag));
		if(ch=='P')
		{
			scanf("%lld", &k);
			k -= 1;
			for(i=1;i<=n-1;i++)
			{
				x = k/jc[n-i];
				k = k%jc[n-i];
				for(j=1;j<=n;j++)
				{
					if(flag[j]==0)
						x--;
					if(x==-1)
					{
						flag[j] = 1;
						break;
					}
				}
				ans[i] = j;
			}
			for(i=1;i<=n-1;i++)
				printf("%lld ", ans[i]);
			for(j=1;j<=n;j++)
			{
				if(!flag[j])
					break;
			}
			printf("%d\n", j);
		}
		else
		{
			for(i=1;i<=n;i++)
				scanf("%lld", &ans[i]);
			now = 1;
			for(i=1;i<=n;i++)
			{
				x = 0;
				for(j=1;j<=n;j++)
				{
					if(flag[j]==0 && j<ans[i])
						x++;
				}
				flag[ans[i]] = 1;
				now += x*jc[n-i];
			}
			printf("%lld\n", now);
		}
	}
	return 0;
}

相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页