[Cqoi2016]不同的最小割【最小割树】

BZOJ 4519


Description

学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成

两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。对于带权图来说,将

所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在

关于s,t的割中容量最小的割。

而对冲刺NOI竞赛的选手而言,求带权图中两点的最小割已经不是什么难事了。我们可以把

视野放宽,考虑有N个点的无向连通图中所有点对的最小割的容量,共能得到N(N−1)

2个数值。

这些数值中互不相同的有多少个呢?这似乎是个有趣的问题。

Input

输入文件第一行包含两个数N,M,表示点数和边数。接下来M行,每行三个数u,v,w,

表示点u和点v(从1开始标号)之间有条边权值是w。

1<=N<=850 1<=M<=8500 1<=W<=100000

Output

 输出文件第一行为一个整数,表示个数。


  很不巧的发现,这道题要求的竟然是我上一道题的简化版本,这次只需要离散化所有边权即可,然后知道有多少条边,就是答案了。所以直接对所有边的边权(也就是最小割树上的N-1条边)进行unique一下,就是答案了。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
//#include <unordered_map>
//#include <unordered_set>
#define _ABS(x, y) ( x > y ? (x - y) : (y - x) )
#define lowbit(x) ( x&( -x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
#define efs 1e-7
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 855, maxM = 9e3 + 7;
int N, M, head[maxN], cnt;
struct Eddge
{
    int nex, to, flow;
    Eddge(int a=-1, int b=0, int c=0):nex(a), to(b), flow(c) {}
}edge[maxM << 2], E[maxN << 1];
inline void addEddge(int u, int v, int flow)
{
    edge[cnt] = Eddge(head[u], v, flow); head[u] = cnt++;
    edge[cnt] = Eddge(head[v], u, 0); head[v] = cnt++;
}
inline void _add(int u, int v, int flow) { addEddge(u, v, flow); addEddge(v, u, flow); }
struct Max_Flow
{
    int deep[maxN], cur[maxN], S, T;
    queue<int> Q;
    inline bool bfs()
    {
        while(!Q.empty()) Q.pop();
        for(int i=1; i<=N; i++) deep[i] = 0;
        deep[S] = 1;
        Q.push(S);
        int u;
        while(!Q.empty())
        {
            u = Q.front(); Q.pop();
            for(int i=head[u], v, f; ~i; i=edge[i].nex)
            {
                v = edge[i].to; f = edge[i].flow;
                if(f && !deep[v])
                {
                    deep[v] = deep[u] + 1;
                    Q.push(v);
                }
            }
        }
        return deep[T];
    }
    int dfs(int u, int dist)
    {
        if(u == T) return dist;
        for(int &i=cur[u], v, f, di; ~i; i=edge[i].nex)
        {
            v = edge[i].to; f = edge[i].flow;
            if(f && deep[v] == deep[u] + 1)
            {
                di = dfs(v, min(dist, f));
                if(di)
                {
                    edge[i].flow -= di; edge[i ^ 1].flow += di;
                    return di;
                }
            }
        }
        return 0;
    }
    inline void Init()
    {
        for(int i=0; i<cnt; i+=2)
        {
            edge[i].flow += edge[i ^ 1].flow;
            edge[i ^ 1].flow = 0;
        }
    }
    inline int Dinic(int st, int ed)
    {
        int ans = 0, tmp;
        S = st; T = ed;
        Init();
        while(bfs())
        {
            for(int i=1; i<=N; i++) cur[i] = head[i];
            while((tmp = dfs(S, INF))) ans += tmp;
        }
        return ans;
    }
}flow;
int top[maxN], tot;
inline void add_E(int u, int v, int w)
{
    E[tot] = Eddge(top[u], v, w);
    top[u] = tot++;
}
inline void _E(int u, int v, int w) { add_E(u, v, w); add_E(v, u, w); }
int P[maxN], TP[maxN];
void CDQ(int l, int r)
{
    if(l == r) return;
    int Flow = flow.Dinic(P[l], P[l + 1]);
    _E(P[l], P[l + 1], Flow);
    int ql = l, qr = r;
    for(int i=l, u; i<=r; i++)
    {
        u = P[i];
        if(flow.deep[u]) TP[ql ++] = u;
        else TP[qr --] = u;
    }
    for(int i=l; i<=r; i++) P[i] = TP[i];
    CDQ(l, ql - 1); CDQ(ql, r);
}
struct New_Graph
{
    int lsan[maxN], _UP, xx[maxN], root[maxN][11], line[maxN][11], deep[maxN];
    void dfs(int u, int father)
    {
        root[u][0] = father;
        for(int i=0; (1 << (i + 1)) <= N; i++)
        {
            root[u][i + 1] = root[root[u][i]][i];
            line[u][i + 1] = min(line[u][i], line[root[u][i]][i]);
        }
        for(int i=top[u], v; ~i; i=E[i].nex)
        {
            v = E[i].to;
            if(v == father) continue;
            line[v][0] = (int)(lower_bound(lsan + 1, lsan + _UP + 1, E[i].flow) - lsan);
            deep[v] = deep[u] + 1;
            dfs(v, u);
        }
    }
    inline int _LCA(int u, int v)
    {
        int ans = INF;
        if(deep[u] < deep[v]) swap(u, v);
        int det = deep[u] - deep[v];
        for(int i=log2(1. * det); i>=0; i--)
        {
            if(det & (1 << i))
            {
                ans = min(ans, line[u][i]);
                u = root[u][i];
            }
        }
        if(u == v) return ans;
        for(int i=log2(1. * N); i>=0; i--)
        {
            if(root[u][i] ^ root[v][i])
            {
                ans = min(ans, min(line[u][i], line[v][i]));
                u = root[u][i];
                v = root[v][i];
            }
        }
        return min(ans, min(line[u][0], line[v][0]));
    }
    inline void Init()
    {
        xx[0] = 0;
        for(int i=1; i<=N; i++)
        {
            xx[i] = 0;
            for(int j=0; (1<<j) <= N; j++)
            {
                root[i][j] = 0;
                line[i][j] = INF;
            }
        }
        for(int i=0; i<N-1; i++) lsan[i + 1] = E[i << 1].flow;
        sort(lsan + 1, lsan + N);
        _UP = (int)(unique(lsan + 1, lsan + N) - lsan - 1);
        printf("%d\n", _UP);
    }
}lca;
int Q;
inline void init()
{
    cnt = tot = 0;
    for(int i=1; i<=N; i++)
    {
        head[i] = top[i] = -1;
        P[i] = TP[i] = i;
    }
}
int main()
{
    scanf("%d%d", &N, &M);
    init();
    for(int i=1, u, v, w; i<=M; i++)
    {
        scanf("%d%d%d", &u, &v, &w);
        _add(u, v, w);
    }
    CDQ(1, N);
    lca.Init();
    return 0;
}
/*
8 15
1 2 3
1 4 4
1 6 2
1 8 4
2 4 1
2 3 7
2 7 6
3 4 1
3 5 5
3 7 2
4 5 1
5 6 1
5 7 8
7 8 3
2 8 4
*/

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wuliwuliii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值