测试地址:Counting Stars
题目大意:给一张无向图,其中一个子图被称为A形图,当且仅当其选出的
4
4
个点条边刚好构成一个四元环中间加上一条边的形状,问有多少个A形图。
做法:本题需要用到建图+组合计数+思维。
显然我们要先计算包含边
i
i
的三元环数目,然后对于边
i
i
作为中间边的A形图就有个。于是现在的问题变成了求
x
x
。
我们发现用正常的思路去想,怎么都跑不了,但还是会被卡,怎么办呢?接下来的做法将会是颠覆思想的。
我们强行将无向图转成有向图。转化方法为:对于原图中的边
(a,b)
(
a
,
b
)
,如果
a
a
的度数比小,或者在度数相同的情况下,编号比
b
b
小,就从向
b
b
连边,否则就反过来。我们发现这是一个严格的偏序关系,那么原图就转化为了一个DAG,因此原图中每一个三元环,到了现在的图中就不会是一个有向环,而这种“环”中存在且仅存在一条边,使得这条边的两个端点都指向剩下的另一个点,直接枚举计数即可。
有同学可能就要问了,这不还是的么?再回想我们的建图方法,如果一个点的出度大于
m−−√
m
,那么对于它所指向的所有点,每个点的出度都大于
m−−√
m
,这显然是矛盾的,因此每个点的出度不超过
m−−√
m
,于是这个算法的时间复杂度实际上是
O(mm−−√)
O
(
m
m
)
的,可以通过此题。
这个思想真是太神了……在考场上一定想不出来……
以下是本人代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,m,a[200010],b[200010],d[100010];
int first[100010],tot,vis[100010]={0};
ll cnt[200010];
struct edge
{
int v,next;
}e[200010];
void insert(int a,int b)
{
e[++tot].v=b;
e[tot].next=first[a];
first[a]=tot;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(first,0,sizeof(first));
tot=0;
memset(d,0,sizeof(d));
for(int i=1;i<=m;i++)
{
scanf("%d%d",&a[i],&b[i]);
d[a[i]]++,d[b[i]]++;
}
for(int i=1;i<=m;i++)
{
if (d[a[i]]<d[b[i]]||(d[a[i]]==d[b[i]]&&a[i]<b[i]))
insert(a[i],b[i]);
else insert(b[i],a[i]);
}
memset(cnt,0,sizeof(cnt));
for(int i=1;i<=m;i++)
{
for(int j=first[a[i]];j;j=e[j].next)
vis[e[j].v]=j;
for(int j=first[b[i]];j;j=e[j].next)
if (vis[e[j].v])
{
cnt[i]++;
cnt[vis[e[j].v]]++;
cnt[j]++;
}
for(int j=first[a[i]];j;j=e[j].next)
vis[e[j].v]=0;
}
ll ans=0;
for(int i=1;i<=m;i++)
ans+=cnt[i]*(cnt[i]-1)/2ll;
printf("%lld\n",ans);
}
return 0;
}