ICLR_2024:GraphACL 邻域信号预测应对异质性

本文探讨了传统图对比学习方法在处理异质图时的局限,提出GraphACL通过考虑邻居节点的不对称视图,利用预测器和目标编码器策略改进模型性能。通过信息论和矩阵论的理论证明,该方法有效增强了拓扑结构学习和分类任务的性能。
摘要由CSDN通过智能技术生成

一.摘要翻译:

图对比学习在图结构数据的表征学习上取得了卓越的表现,但多数现有的GCL方法依赖于精心构造的图增广和同质性假设。因此,它们难以在异质图上表现良好。在这篇论文中,我们研究对同质图和异质图进行对比学习。我们发现考虑邻居节点的不对称视图能够取得先进的表现。这种简单的方法能够拓展且不依赖于图增广和同质假设。对于GraphACL可以捕获一跳邻居信息和二跳相似性(都是对于建模异质图极为重要的信息)。

二.尝试解决什么问题

1.传统的GCL方法强制邻居节点相似,这是建立在同质性假设上的,对于异质图效果不佳

2.传统的GCL依赖于数据增广

三.解决问题的关键

1.如果不拉近邻居节点间的距离,要怎么通过CL来学到更多的拓扑结构信息呢?   GraphACL给出一种方法,设计一个predictor,让中心节点去预测邻居节点的信号,这样既可保证encoder学到拓扑结构信息,又不会让两者长得太像。(这个思路应该是借鉴BGRL和BYOL)

2.还是为了防止邻居节点长太像,中心节点通过online encoder生成,要预测的邻域节点用target encoder生成,为了保证训练效率,target encoder的参数使用online encoder的指数平滑

3.为了防止维度坍塌,增加一个全局正则化损失

4.对比损失和正则化损失简单加和效果不好,放缩成交叉熵

四.理论证明

1.放缩过程:先用对数简单放缩,然后用Jensen不等式,把求和符号提取出来

凹函数Jensen不等式:f(∑i=1n​ai​xi​)≥∑i=1n​ai​f(xi​)  

2.借助上述的放缩过程,从信息论角度证明,Loss可以降低给定邻域信息Y条件下,X的条件熵→从而增大一阶邻域间的互信息

3.这里我没推明白,后续补补矩阵论。。。。 

4.这里的细节我也没太弄清楚。 大概就是在说Th3将分类任务的MSE误差拆解成两个部分,这里证明了二跳邻接图的同质性能够提升分类性能。 

线代矩阵学的不够深啊( Ĭ ^ Ĭ ),不够用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值