pytorch:加载预训练模型中的部分参数,并固定该部分参数

这篇博客介绍了如何在PyTorch中使用DenseNet121模型,仅加载和固定预训练模型的部分参数。首先,定义并初始化模型,然后将模型转移到CUDA设备上。接着,通过更新模型状态字典并加载预训练权重,实现了对部分参数的加载。最后,使用DataParallel进行并行计算。
摘要由CSDN通过智能技术生成

pytorch:加载预训练模型中的部分参数,并固定该部分参数

https://www.jianshu.com/p/d67d62982a24

		initial_cnn = models.densenet121(pretrained=False)
        self.cnn = torch.nn.Sequential(*(list(initial_cnn.children())[:-1]))
        device = torch.device('cuda')
        cnn = self.cnn.to(device)
        cnn = nn.DataParallel(cnn)

        model_dict = cnn.state_dict()

        pretrained_dict = torch.load('epoch_11.pth')

        pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}

        model_dict.update(pretrained_dict)

        cnn.load_state_dict(model_dict)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值