系列文章目录
PyTorch深度学习——Anaconda和PyTorch安装
Pytorch深度学习-----数据模块Dataset类
Pytorch深度学习------TensorBoard的使用
Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Compose,RandomCrop)
Pytorch深度学习------torchvision中dataset数据集的使用(CIFAR10)
Pytorch深度学习-----DataLoader的用法
Pytorch深度学习-----神经网络的基本骨架-nn.Module的使用
Pytorch深度学习-----神经网络的卷积操作
Pytorch深度学习-----神经网络之卷积层用法详解
Pytorch深度学习-----神经网络之池化层用法详解及其最大池化的使用
Pytorch深度学习-----神经网络之非线性激活的使用(ReLu、Sigmoid)
Pytorch深度学习-----神经网络之线性层用法
一、什么是Sequential?
"Sequential"是一个时序容器,可以将各种层按顺序添加到容器中,从而简化神经网络模型的搭建。它可以从头开始构建模型,也可以在其他容器(如Sequential、Functional、Subclass)中构建模型,还可以与其他容器组合使用。
官网解释:

官网的举例应用
# Using Sequential to create a small model. When `model` is run,
# input will first be passed to `Conv2d(1,20,5)`. The output of
# `Conv2d(1,20,5)` will be used as the input to the fir
本文详细介绍了PyTorch中的Sequential容器,包括其用途和如何使用Sequential构建神经网络模型。通过实例展示了如何不使用和使用Sequential实现同一神经网络,并利用tensorboard进行可视化。
订阅专栏 解锁全文
8万+

被折叠的 条评论
为什么被折叠?



