【6Dof位姿估计】DPVL:6DoF Object Pose Estimation via Differentiable Proxy Voting Loss论文理解

本文介绍了DPVL(Differentiable Proxy Voting Loss),一种用于6Dof对象位姿估计的新方法。该方法通过结合方向向量投票和可微分的代理投票损失,提高了估计精度和收敛速度。论文创新地提出考虑距离因素,解决投票误差放大的问题,并在训练策略和数据增强方面进行了详细设计。实验表明,DPVL在6Dof估计中表现出优越性能。
摘要由CSDN通过智能技术生成


论文链接:arxiv

解决什么问题

6Dof估计,优化了投票


本文创新点\贡献

提出了一个新的loss,可以将距离因素也考虑进去,根据投票方向、像素和被投票关键点的距离一起来优化结果,收敛还很快


本文IDEA来源

投票方法在遮挡和视角改变上都有鲁棒性,所以也是基于投票来做的


方法

在这里插入图片描述
不需要微调,先投票2D关键点,关键点用了两种loss:一是方向,二是距离;然后pnp解出pose


方向向量的投票

作者的预测使用了很大的感受野,覆盖了物体的大部分,这样即使有些关键点看不见了,也能从可视部分推导出来

那不知点云是否有效

mask和投票向量的表达和PVN3D是一样的,方向向量用smooth L-1 loss来回归:
L v f = ∑ k ∈ K ∑ p ∈ M l 1 ( ∣ ∣ u k ( p ) − v k ( p ) ∣ ∣ 1 ) L_{vf} = \sum_{k\in K}\sum_{p\in M} l_1 (||u_k( p) - v_k(p)||_1) Lvf=kKpMl1(uk(p)vk(p)1)

其中 v k ( p ) v_k(p) vk(p)是估计的方向向量, M M M是物体mask


Differentiable proxy voting loss

在这里插入图片描述
来源
这块是这个论文的总重要的创新点,作者提出这个是因为作者发现发现,如果只是用方向来投票的话,如果投票点和关键点的距离很远的话,即使投票方向误差很小,通过距离来放大之后偏差就很大了,如上图所示, p 1

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值