Yolo-6D(Real-Time Seamless Single Shot 6D Object Pose Prediction)理解

Yolo-6D是一种实时的6D目标位姿预测方法,无需多阶段处理或精确的目标纹理模型。通过全新的CNN结构,直接预测3D边界框顶点在2D图像的投影位置,利用PnP算法估计3D位姿。相较于其他算法,Yolo-6D在目标数量增加时,运行时间保持稳定,且无需后期处理。然而,该方法需要预先知道3D模型信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文中所有灰色引用部分都是在阅读文章时的思考,阅读时可直接跳过灰色部分,不会影响内容

本文创新点

  1. 从一个RGB图像预测他的6D位姿估计,不需要多阶段也不需要检验多种假设,也不需要精确的目标纹理模型,精准度足够不需要后期处理。
  2. 提出了一个新的CNN结构,直接预测目标的射影顶点的2D图像位置,然后用PnP算法估计目标的3D位姿。

相比之下其他的算法

  1. 运行速度随着检测物体的数量直线上升,而作者的方法运行时间和目标数量关系不大,保持稳定。
  2. 现存的一些算法都需要微调他们的结果,这样就导致了每个物体检测都超时了,作者不需要微调速度更快

但是
作者的方法需要先验3D模型知识

作者Ideal来源

ta mu gong, o mu zi a

作者方法

没什么很新的方法,就把方法和训练写一起了

核心思想

用网络预测3D包围盒角落的射影的2D位置,这涉及到预测比2D包围盒回归更多的2D点。得到了2D的角落射影,再加上先验3D点信息,直接用PnP算法就是能求出6D位姿

Deep3Dbox只用了四个点,难道是预测的物体的中心点?再加上一些看似立体的、Deep3Dbox并没有预测的点?

算法流程

点的信息

用9个控制点参数化每个目标的3D模型,好处:
这几个参数能用在任意形状和拓扑的刚体上,九个点展开到2D图像很方便,而且对许多人造物体有语义意义。

咋还用这么多?八个不够吗,中心点有啥用
答:也不一定非要用9点法表示,也可以用其他方法
在这些点里面,选择紧凑的3D包围盒的八个角点来拟合3D模型。
第九个点当形心
有了形心是不是比较好判断方向?

网络结构

用全卷积加工输入的2D图片,如Figure 1 (a)
在这里插入图片描述
F i g u r e   1   ( a ) Figure\ 1\ (a) Figure 1 (a)
用的是v2的yolo,共使用23个卷积层和5个最大池化层,选择 S = 13 S=13 S=13。还允许网络高层添加转移层来使用fine-grained特征。从维度是 26 × 26 × 512 26\times 26 \times 512 26×26×512的层提取出了特征,卷积成 13 × 13 × 256 13 \times 13 \times 256 13×13×256后和 13 × 13 × 1024 13\times 13 \times 1024 13×13×1024特征图结合。

为了获得更精细的特征?很像残差,这样对预测小尺度物体有好处,是为了这个吗?

在这里插入图片描述

当网络的下采样用32因子的时候,就用32的倍数的分辨率作为图象输入 { 320 , 352 , . . . , 608 } \{320,352,...,608\} { 320,352,...,608},以此来增强对不同size物体的鲁棒性。

然后将图片分到2D规则网格 S × S S\times S S×S中去。

在这里插入图片描述
F i g u r e   1   ( c )

### 关于 YOLO-World 的实时开放词汇对象检测 YOLO-World 是一种先进的开放词汇对象检测框架,它结合了预训练的语言模型和视觉特征提取器来实现跨类别的目标识别能力[^1]。该方法的核心在于利用大规模语言模型中的语义信息增强传统计算机视觉模型的表现力。 #### 复现 YOLO-World 的主要步骤概述 为了成功复现 YOLO-World 模型,可以参考以下技术要点: 1. **数据准备** 需要收集并处理用于训练的基础图像数据集以及对应的标签文件。通常使用的公开数据集包括 COCO 和 ImageNet 等。这些数据集提供了丰富的标注信息,有助于构建高质量的训练环境。 2. **模型架构设计** YOLO-World 使用了一个融合模块将 CLIP(Contrastive Language–Image Pre-training)或其他多模态模型生成的文字嵌入向量与卷积神经网络提取的空间特征相结合。这种结构允许系统理解未见过的新类别名称而无需重新训练整个体系。 3. **代码库推荐** GitHub 上存在多个基于 PyTorch 或 TensorFlow 开发的相关项目可供学习借鉴。例如,“openvocabulary-detection”仓库提供了一套完整的解决方案,涵盖了从基础组件搭建到最终推理部署的所有环节。 4. **性能优化技巧** 在实际操作过程中,可以通过调整超参数、引入注意力机制等方式进一步提升检测精度。此外,还可以尝试迁移学习策略以减少计算资源消耗的同时获得更好的泛化效果。 以下是简单的 Python 脚本片段展示如何加载必要的依赖项并与自定义配置一起初始化一个基本版本的对象探测实例: ```python import torch from yoloworld.model import YoloWorldModel device = 'cuda' if torch.cuda.is_available() else 'cpu' model = YoloWorldModel(pretrained=True).to(device) def detect_objects(image_path): image_tensor = preprocess_image(image_path) # 定义自己的图片前处理函数 outputs = model(image_tensor.unsqueeze(0)) predictions = postprocess_outputs(outputs) # 同样需自行编写后置处理逻辑 return predictions ``` > 注:上述仅为示意代码,具体实现细节可能因不同开发者的设计思路有所差异,请参照官方文档或社区贡献者分享的最佳实践案例深入研究。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值