题意: 建立一个网络通路,使得所有的据点都联通, 要求连接出的通路的总权值最小(即最小生成树);
输出: 通路上最大的边以及, 边数, 再输出各边的起始点
分析: 最小生成树常用算法有两种: 一为Prim , 二为 Kruskal, 此处由于还要输出边, 故采用Kruskal比较方便(Prim适合点少边多的 ->密稠图, Kruskal适合点多边少的->稀疏图);
本题Sample数据有问题:
结果应为:
1
3
1 2
1 3
3 4
Code:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn = 1005;
const int inf = 0x3f3f3f3f3f;
int fa[maxn];
int n, m, ans=0, MaxLen=-1, len, num[maxn];
struct edge {
int u, v, w;
}node[15005];
int max(int a, int b){
return (a>b)?a:b;
}
bool cmp(edge a, edge b){
return a.w<b.w;
}
int Find(int a){
if(fa[a]==a) return a;
fa[a] = Find(fa[a]);
return fa[a];
}
bool Union(int a, int b){
int fa1 = Find(a);
int fa2 = Find(b);
if(fa1==fa2) return false;
else {
fa[fa1] = fa2;
return true;
}
}
void Kruskal(){
int i, j, k;
for(i=1;i<=m; i++){
int u = node[i].u;
int v = node[i].v;
if(Union(u, v)){
num[++len] = i;
ans = max(ans,node[i].w);
}
}
return ;
}
int main()
{
int i, j, k;
//freopen("in.txt","r", stdin);
while(~scanf("%d %d", &n, &m)){
for(i=1; i<=n; i++) fa[i]=i;
ans=0, MaxLen=-1, len=0;
for(i=1; i<=m; i++){
scanf("%d %d %d", &node[i].u, &node[i].v, &node[i].w);
}
sort(node+1, node+1+m,cmp);
Kruskal();
printf("%d\n%d\n", ans,len );
for(i=1; i<=len; i++){
printf("%d %d\n", node[num[i]].u, node[num[i]].v);
}
}
return 0;
}