POJ 1861 Network (Kruskal+并查集)

题意:  建立一个网络通路,使得所有的据点都联通, 要求连接出的通路的总权值最小(即最小生成树);

输出: 通路上最大的边以及, 边数,  再输出各边的起始点

分析:  最小生成树常用算法有两种: 一为Prim  , 二为 Kruskal, 此处由于还要输出边, 故采用Kruskal比较方便(Prim适合点少边多的 ->密稠图, Kruskal适合点多边少的->稀疏图);

本题Sample数据有问题:

结果应为:

1

3

1 2
1 3
3 4

Code:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn = 1005;
const int inf = 0x3f3f3f3f3f;
int fa[maxn];
int n, m, ans=0, MaxLen=-1, len, num[maxn];
struct edge {
	int u, v, w;
}node[15005];
int max(int a, int b){
	return (a>b)?a:b;
}
bool cmp(edge a, edge b){
	return a.w<b.w;
}
int Find(int a){
	if(fa[a]==a) return a;
	fa[a] = Find(fa[a]);
	return fa[a];
}
bool Union(int a, int b){
	int fa1 = Find(a);
	int fa2 = Find(b);
	if(fa1==fa2) return false;
	else {
		fa[fa1] = fa2;
		return true;
	}
}
void Kruskal(){
	int i, j, k;
	for(i=1;i<=m; i++){
		int u = node[i].u;
		int v = node[i].v;
		if(Union(u, v)){
			num[++len] = i;
			ans = max(ans,node[i].w);
		}
	}
	return ;
}
int main()
{
	int i, j, k;
	//freopen("in.txt","r", stdin);
	while(~scanf("%d %d", &n, &m)){
		for(i=1; i<=n; i++) fa[i]=i;
		ans=0, MaxLen=-1, len=0;
		for(i=1; i<=m; i++){
			scanf("%d %d %d", &node[i].u, &node[i].v, &node[i].w);
		}
		sort(node+1, node+1+m,cmp);
		Kruskal();
		printf("%d\n%d\n", ans,len );
		for(i=1; i<=len; i++){
			printf("%d %d\n", node[num[i]].u, node[num[i]].v);
		}
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值